Blood Profile of Rattus Nurvegicus Exposed to HgCl2 and Received Combination of IR Bagendit Rice Leaves-Infused Water and Young Coconut Water


  • Budi Santosa Department of Medical/Clinical Laboratory Science, Universitas Muhammadiyah Semarang, Indonesia



Mercury chloride (HgCl2) is widely used in industries; in fact, this chemical substance is deadly for health and causes various health problems, such as liver damage, kidney damage, and hematopoietic disorders, especially in erythropoiesis. This study aims to determine the blood profile in Rattus nurvegicus exposed to HgCl2 by combining IR Bagendit rice leaves-infused water and young coconut water. This study employed an experimental method to examine the positive control group exposed to HgCl2 and the negative control group receiving a placebo. Meanwhile, the treatment groups received a combination of IR Bagendit rice leaves-infused water in stratified compositions and young coconut water. The hematologic profile was examined using a hematologic analyzer, while the reticulocyte count was examined using wet and dry methods. The mean value of each group was tested using ANOVA. This study has successively obtained average levels of Hb (C+ 12,0;C- 14,2;T1 12,5;T2 12,9;T3 12,8), the erythrocyte count (C+ 6,52;C- 7,80;T1 1,44;T2 1,07;T3 7,32), levels of Ht (C+ 35,5;C- 42,9;T1 37,8;T2 37,9;T3 38,2), MCV (C+ 73,7;C- 79,9;T1 80,4;T2 78,7;T3 79,6), MCH (C+ 27,3;C- 29,9;T1 29,5;T2 28,5;T3 29,1), and MCHC (C+ 31,1;C- 34,2;T1 31,9;T2 33,3;T3 32,1), and the reticulocyte count (C+ 2,0;C- 1,2;T1 1,3;T2 1,1;T3 1,3). The significant differences in the groups are found in levels of Hb, Ht, MCV, and MCHC (p-value 0,00; 0,00; 0,03; 0,01). This study concludes that combining IR Bagendit rice leaves-infused water and coconut water could prevent blood profile exposure to HgCl2. Suggestions for further research to increase the intervention time and measure oxygen levels.


Aaseth, J., Skaug, M. A., Cao, Y., & Andersen, O. (2015). Chelation in metal intoxication--Principles and paradigms. J Trace Elem Med Biol, 31, 260–266.

Ajsuvakova, O. P., Tinkov, A. A., Aschner, M., Michalke, B., Skalnaya, M. G., Skalny, A. V, Butnariu, M., Dadar, M., Sarac, I., Aaseth, J., Santa, U. F. De, Maria, S., Group, E. S., Sciences, A., & Trust, I. H. (2020). Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev, 417, 1–38.

Azevedo, B. F., Furieri, L. B., Pec, F. M., Wiggers, G. A., Vassallo, P. F., Sim, M. R., Fiorim, J., Batista, P. R. De, Fioresi, M., Rossoni, L., Stefanon, I., Alonso, J., Salaices, M., & Vassallo, D. V. (2012). Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J Biomed Biotechnol, 2012, 949048.

Crespo-López, M. E., Soares, E. S., Macchi, B. de M., Santos-Sacramento, L., Takeda, P. Y., Lopes-Araújo, A., Paraense, R. S. de O., Souza-Monteiro, J. R., Augusto-Oliveira, M., Luz, D. A., Maia, C. D. S. F., Rogez, H., Lima, M. de O., Pereira, J. P., Oliveira, D. C., Burbano, R. R., Lima, R. R., Do Nascimento, J. L. M., & Arrifano, G. de P. (2019). Towards therapeutic alternatives for mercury neurotoxicity in the amazon: Unraveling the pre-clinical effects of the superfruit açaí (euterpe oleracea, mart.) as juice for human consumption. Nutrients, 11(11), 2–19.

Bjørklund G, Mutter J, J. A. (2017). Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch Toxicol, 19(12), 3787–3797.

Gonzalez, E., Vaillant, F., Pérez, A. M., & Rojas, G. (2012). In vitro cell-mediated antioxidant protection of human erythrocytes by some common tropical fruits. J Nutr Food Sci, 2(3), 2–8.

Iqbal, K., & Asmat, M. (2012). Uses and effects of mercury in medicine and dentistry. J Ayub Med Coll Abbottabad, 24(3–4), 204–207.

Jan, A. T., Azam, M., Siddiqui, K., Ali, A., & Choi, I. (2015). Heavy Metals and Human Health : Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci, 16(12), 29592–29630.

Li, Y., Zheng, Y., Zhang, Y., Xu, J., & Gao, G. (2018). Antioxidant activity of coconut (Cocos nucifera L.) protein fractions. Molecules, 23(3), 1–11.

Nezhad RM, Shahpiri A, M. A. (2013). Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J, 32(2), 132–137.

Piva, E., Brugnara, C., Spolaore, F., & Plebani, M. (2015). Clinical utility of reticulocyte parameters. Clinics in Laboratory Medicine, 35(1), 133–163.

Ruttkay-nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., & Kizek, R. (2013). The Role of Metallothionein in Oxidative Stress. Int. J. Mol. Sci, 14, 6044–6066.

Sakamoto, M., Nakamura, M., & Murata, K. (2018). Mercury as a Global Pollutant and Mercury Exposure Assessment and Health Effects. Nihon Eiseigaku Zasshi, 73(3), 258–264.

Santosa, B. (2021). Water Infusion of IR-Bagendit Rice Leaves from Various Locations in Central Java as a Candidate Material to Prevent a Heavy Metal Exposure. Journal of Hunan University. Natural Sciences, 48(7), 238–243.

Santosa, B., Darmawati, S., Kartika, A. I., Nuroini, F., Ernanto, A. R., Ayuningtyas, A., Salleh, M. N., & Zulaikhah, S. T. (2020). Isolation, identification similarity and qualitative expression of metallothionein gene in ir-bagendit rice (Oryza sativa). Pharmacognosy Journal, 12(4), 709–715.

Santosa, B., Rosidi, A., Anggraini, H., Latrobdiba, Z. M., Damayanti, F. N., & Nugroho, H. S. W. (2022). Mask Protection Against Lead Exposure and Its Correlation with Erythropoiesis in Automotive Body Painters at Ligu District, Semarang, Indonesia. Journal of Blood Medicine, 13, 113–119.

Santosa, B., Sunoko, H. R., & Sukeksi, A. (2018). Aqueous IR Bagendit rice leaf extract decreases reticulocyte count in lead-exposed rats. Universal Medicine, 37(1), 57–64.

Zulaikhah, S. T. (2019). Health Benefits of Tender Coconut Water (TCW). IJPRS, 10(2), 474–480.




How to Cite

Santosa, B. (2022). Blood Profile of Rattus Nurvegicus Exposed to HgCl2 and Received Combination of IR Bagendit Rice Leaves-Infused Water and Young Coconut Water. Medical Laboratory Technology Journal, 8(2), 112–119.