Effects of Curcumin on Changes in Spermatogenetic Cells of Rats Treated with Cisplatin


  • Şengül Şentürk Beykent University, Vocational Studies, Program of Pathology Laboratory Techniques, İstanbul, Turkey
  • Mustafa Sandıkçı Aydın Adnan Menderes University, Faculty of Veterinary, Department of Histology and Embryology, Aydın, Turkey




Cisplatin is an effective antineoplastic drug which is used to treat many types of cancer. The most common known side effect of this drug is infertility. Curcumin, also called turmeric, has antioxidant and antitumor activities. This study was designed to investigate the effects of curcumin on the changes in spermatogenetic cells caused by cisplatin, which is used as a chemotherapeutic drug especially in testicular cancers. For this purpose, randomly selected 36 Spraque Dawley rats were seperated to 4 groups that of control, cisplatin, curcumin and curcumin+cisplatin and each group was seperated to 3 subgroups, each of them have 3 rats, so total 12 subgroups were obtained. The testicular tissues obtained from rats were evaluated histochemically, immunohistochemically and ultrastructually. In the results of this study, it is observed that the rate of apoptosis increased significantly in the experimental groups given curcumin together with cisplatin injection, and the transition-1 protein which is involved in DNA packaging in the elongated spermatids belonging to stages of XII, XIII an XIV, immunopositivity is increased statistically in the cisplatin-administered experimental groups compared to control groups. Both light and electron microscopic findings showed that intense degeneration, vacuolization, germ cell loss and spermatogenetic arrest occurred especially in the group given curcumin together with cisplatin. The results of our study showed that cisplatin can cause problems in infertility through DNA packaging and dragging cells to apoptosis and necrosis. Physicians who use cisplatin for cancer treatment are advised not to use curcumin together with cisplatin because it exacerbates the side effects of the cancer drug.


Ahmed EA, Omar HM, Elghaffar S, Ragb SM, Nasser AY (2011). The antioxidant activity of vitamin C, DPPD and L-cysteine against Cisplatin-induced testicular oxidative damage in rats. Food Chem Toxicol, 49 (5), 1115-1121. doi:10.1016/j.fct.2011.02.002

Aktas C, Kanter M, Erboğa M, Öztürk S (2012). Anti-apoptotic effects of curcumin on cadmium induced apoptosis in rats. Toxicol. Ind. Health, 28(2), 122-130

Atessahin A, Karahan I, Turk G, Gur S, Yilmaz S, Ceribasi AO (2006). Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reprod Toxicol, 21 (1), 42-47. doi:10.1016/j.reprotox.2005.05.003

Aydıner A AY, Sayın Ü, Kuntsal L, Topuz E (1995). Cisplatin’in testis dokusuna etkisi: ultrastrüktürel ve biyokimyasal bir çalışma. Turk J Path, 11(1), 5-9

Bagheri-Sereshki N, Hales BF, Robaire B (2016). The Effects of Chemotherapeutic Agents, Bleomycin, Etoposide, and Cisplatin, on Chromatin Remodeling in Male Rat Germ Cells. Biol Reprod, 94(4), 81. doi:10.1095/biolreprod.115.137802

Bayrak O, Uz E, Bayrak R, Turgut F, Atmaca AF, Sahin S, Yıldırım ME, Kaya A, Cimentepe E, Akcay A (2008). Curcumin protects against ischemia/reperfusion injury in rat kidneys. World J. Urol, 26, 285-291

Boroja T, Katanic J, Rosic G, Selakovic D, Joksimovic J, Misic D, Stankovic V, Jovicic N, Mihailovic V (2018). Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity. Food Chem Toxicol, 118, 252-263. doi:10.1016/j.fct.2018.05.001

Chandel NS, Tuveson DA (2014). The promise and perils of antioxidants for cancer patients. N Engl J Med, 371(2), 177-178. doi:10.1056/NEJMcibr1405701

Cherry SM, Hunt PA, Hassold TJ. (2004). Cisplatin disrupts mammalian spermatogenesis, but does not recombination or chromosome segregation. Mutat Res, 564, 115–128

Chuang SE, Cheng AL, Lin JK, Kuo ML (2000). Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol, 38, 991-995

Colpi GM, Contalbi GF, Nerva F, Sagone P, Piediferro G. (2004). Testicular function following chemo-radiotherapy. Eur J Obstet Gynecol Reprod Biol, 113, 2-6

DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475 (7354), 106-109. doi:10.1038/nature10189

Einhorn LH, Foster RS (2006). Bleomycin, etoposide, and cisplatin for three cycles compared with etoposide and cisplatin for four cycles in good risk germ cell tumors: is there a preferred regimen?. J Clin Oncol, 24, 2598-2599

Ekinci Akdemir FN, Yildirim S, Kandemir FM, Aksu EH, Guler MC, Kiziltunc Ozmen H, Kucukler S, Eser G (2019). The antiapoptotic and antioxidant effects of eugenol against cisplatin-induced testicular damage in the experimental model. Andrologia, 51(9), e13353. doi:10.1111/and.13353

Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504), 298-302. doi:10.1038/nature13236

Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV (2007). HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12(3), 230-238. doi:10.1016/j.ccr.2007.08.004

Giannessi F, Giambelluca MA, Grasso L, Scavuzzo MC, Ruffoli R (2008) Curcumin protects Leydig cells of mice from damage induced by chronic alcohol administration. Med Sci Monit, 14(11), BR237-242

Glasauer A, Chandel NS (2014). Targeting antioxidants for cancer therapy. Biochem Pharmacol, 92(1), 90-101. doi:10.1016/j.bcp.2014.07.017

Glasauer A SL, Diebold LP, Mazar AP, Chandel NS. (2014) Targeting SOD1 reduces experimental non-small-lung cancer. J Clin Invest, 124, 117-128

Gorrini C, Harris IS, Mak TW (2013). Modulation of oxidative stress as an anticancer strategy. Nature, 12, 931-947

Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brustle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW (2015). Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 27(2), 211-222. doi:10.1016/j.ccell.2014.11.019

Howell SJ, Shalet SM (2005). Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr, (34), 12-17. doi:10.1093/jncimonographs/lgi003

Huddart RA, Birtle AJ (2005). Recent advances in the treatment of testicular cancer. Expert Rev Anticancer Ther, 5(1), 123-138. doi:10.1586/14737140.5.1.123

Ilbey YO, Ozbek E, Cekmen M, Simsek A, Otunctemur A, Somay A (2009). Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Hum Reprod, 24(7), 1717-1725. doi:10.1093/humrep/dep058

Johnsen SG (1970). Testicular biopsy score count—a method for registration of spermatogenesis in human testes. Normal values and results of 335 hypogonadal males. Hormones, 1, 2-25

Kanter M, Tarladaçalışır YT, Uygun M. (2007). Sisplatin nefrotoksisitesinde E vitamininin koruyucu etkileri: ışık ve elektron mikroskobik çalışma. Tıp Araştırma Dergisi, 5(3), 83-90

Karasawa T, Steyger PS (2015). An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett, 237(3), 219-227. doi:10.1016/j.toxlet.2015.06.012

Kopp HG, Kuczyk M, Classen J, Stenzl A, Kanz L, Mayer F, Bamberg M, Hartmann JT (2006). Advances in the treatment of testicular cancer. Drugs, 66(5), 641-659. doi:10.2165/00003495-200666050-00005

Kuhlmann MK, Burkhardt G, Köhler H. (1997). Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant, 12(12), 2478-2480

Laskey RA, Mills AD, Philpott A, Leno GH, Dilworth SM, Dingwall C (1993). The role of nucleoplasmin in chromatin assembly and disassembly. Philos Trans R Soc Lond B Biol Sci, 339(1289), 263-269. doi:10.1098/rstb.1993.0024

Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell, 55 (2), 253-263. doi:10.1016/j.molcel.2014.05.008

Maselli J, Hales BF, Chan P, Robaire B (2012) Exposure to bleomycin, etoposide, and cis-platinum alters rat sperm chromatin integrity and sperm head protein profile. Biol Reprod, 86(5),166, 161-110. doi:10.1095/biolreprod.111.098616

Maselli J, Hales BF, Robaire B (2013) The effects of chemotherapy with bleomycin, etoposide, and cis-platinum (BEP) on rat sperm chromatin remodeling, fecundity and testicular gene expression in the progeny. Biol Reprod, 89(4), 85. doi:10.1095/biolreprod.113.110759

Mercantepe T, Unal D, Tumkaya L, Yazici ZA (2018). Protective effects of amifostine, curcumin and caffeic acid phenethyl ester against cisplatin-induced testis tissue damage in rats. Exp Ther Med, 15(4), 3404-3412. doi:10.3892/etm.2018.5819

Miller D. Brinkworth M, Iles D. (2010). Paternal DNA packaging in spermatozoa:more than the sum of its parts? DNAi histones, protamines and epigenetics?. Reproduction, 139(2), 287-301

O'Flaherty CM, Chan PT, Hales BF, Robaire B (2012). Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl, 33(4), 629-636. doi:10.2164/jandrol.111.015388

Park BH, Lim JE, Jeon HG, Seo SI, Lee HM, Choi HY, Jeon SS, Jeong BC (2016). Curcumin potentiates antitumor activity of cisplatin in bladder cancer cell lines via ROS-mediated activation of ERK1/2. Oncotarget, 7(39), 63870-63886. doi:10.18632/oncotarget.11563

Sayin VI, Ibrahim MX, Larsson E, Nillson JA, Lindahl P, Bergo MO (2014). Antioxidant accelerate lung cancer progression in mice. Sci Transl Med, 6, 215-221

Songur A, Karateke H, Tosun M, Gönül Y, Turamanlar O. (2016). Histomorphometric and immunohistochemical evaluation of the testes and blood-testis barrier in postnatal period in rats. Kocatepe Medical Journal, 17, 52-59

Teoh-Fitzgerald ML, Fitzgerald MP, Zhong W, Askeland RW, Domann FE (2014). Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis. Oncogene, 33 (3), 358-368. doi:10.1038/onc.2012.582

Turk G, Ceribasi AO, Sahna E, Atessahin A (2011). Lycopene and ellagic acid prevent testicular apoptosis induced by cisplatin. Phytomedicine, 18(5), 356-361. doi:10.1016/j.phymed.2010.07.008

Türk G, Ateşşahin A, Sönmez M, Ceribaşı AO, Yüce A. (2008). Improvement of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril, 89,1474-1481

Verma RJ, Mathuria N (2009). Effect of curcumin on aflatoxin-induced biochemical changes in testis of mice. Fertil Steril, 91(2), 597-601. doi:10.1016/j.fertnstert.2007.11.053

Wei SM, Yan ZZ, Zhou J (2009). Curcumin attenuates ischemia-reperfusion injury in rat testis. Fertil Steril, 91(1), 271-277. doi:10.1016/j.fertnstert.2007.10.082

Xia X, Cai H, Qin S, Xu C (2012). Histone acetylase inhibitor curcumin impairs mouse spermiogenesis-an in vitro study. PLoS One, 7(11), e48673. doi:10.1371/journal.pone.0048673

Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J, Finley LW, Lu C, Lindsten T, Cross JR, Qing G, Liu Z, Simon MC, Rabinowitz JD, Thompson CB (2014). Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov, 4(12), 1406-1417. doi:10.1158/2159-8290.CD-14-0250




How to Cite

Şentürk, Şengül, & Sandıkçı, M. (2022). Effects of Curcumin on Changes in Spermatogenetic Cells of Rats Treated with Cisplatin. Medical Laboratory Technology Journal, 8(2), 177–199. https://doi.org/10.31964/mltj.v8i1.483