Fibrinolytic Protease-Producing Bacteria with Varied Hemolysis Pattern Associated with Marine Algae Dictyota sp.

Authors

  • Muhammad Ardi Afriansyah Medical Laboratory Technology, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang, Indonesia
  • Stalis Norma Ethica Master of Clinical Laboratory Science, Universitas Muhammadiyah Semarang, Indonesia

DOI:

https://doi.org/10.31964/mltj.v9i2.525

Keywords:

Antithrombosis, cardiovascular disease, Dictyota sp., fibrinolytic enzyme

Abstract

The main death factor of cardiovascular disease (CVD) is the formation of a blood clot (thrombus). Thrombus is formed by the action of fibrin, playing a role as a blood coagulation agent. Administration of fibrinolytic enzymes can degrade fibrin through the fibrinolysis process. Therefore, searching for new sources of fibrinolytic enzymes becomes critical in eradicating diseases by fibrinolysis of thrombus. This study aims to isolate fibrinolytic protease-producing bacteria associated with fermented brown algae products Dictyota sp, of Awur Bay, Jepara, Indonesia, and to observe their hemolysis pattern. As many as 14 unique bacterial colonies previously isolated from fermented Dictyota sp. were sub-cultured using Zobell Agar (ZA) medium. Skim Milk Agar (SMA) and Fibrin Agar (FA) were then used as selective media to detect the presence of fibrinolytic protease-producing bacteria, which was indicated by their ability to form a clear proteolytic and fibrinolytic zone simultaneously around bacterial colonies. Hemolysis characteristics of fibrinolytic bacteria were determined using Blood Agar Plate (BAP) to test their ability to produce hemolysin toxin. As a result, of these 14 isolates, 3 of them, namely FD-09, FD-13, and FD-14 (FD= Fermented Dictyota), could produce both proteolytic and fibrinolytic zone with a fibrinolytic index range of 2.0–2.9. Isolate FD-09 is the least pathogenic (g-hemolytic) compared to other fibrinolytic isolates, FD-13 (b-hemolytic) and FD-14 (a-hemolytic), in terms of hemolysin toxicity. In conclusion, fermented Dictyota sp. is a potential source of bacteria-producing fibrin-degrading protease with varied hemolysis patterns. It is necessary to identify bacteria-producing fibrinolytic protease isolates Dictyota sp. and further characterization regarding the specificity and activity of the resulting protease to develop its potential as an antithrombotic agent.

References

Altaf, F., Wu, S., & Kasim, V. (2021). Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. 8(May), 1–17. https://doi.org/10.3389/fmolb.2021.680397

Afriansyah, M, A., M., Kamaruddin, M., Norma Ethica, S., & Fitria Aprianti, N. (2021). Aktıvıtas Antı-Bıofılm Bakterı Darı Produk Alga Coklat Dictyota sp. Medika Alkhairaat : Jurnal Penelitian Kedokteran Dan Kesehatan, 3(3), 89–93. https://doi.org/10.31970/ma.v3i3.82

Asril, M., & Leksikowati, S. S. (2019). Isolasi dan Seleksi Bakteri Proteolitik Asal Limbah Cair Tahu Sebagai Dasar Penentuan Agen Pembuatan Biofertilizer. Elkawnie, 5(2), 86. https://doi.org/10.22373/ekw.v5i2.4356

Barzkar, N., Jahromi, S. T., & Vianello, F. (2022). Marine Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Biochemical Properties and Thrombolytic Activity. Marine Drugs, 20(1), 2-13. https://doi.org/10.3390/md20010046

Bi, Q., Han, B., Feng, Y., Jiang, Z., Yang, Y., & Liu, W. (2013). Antithrombotic effects of a newly puri fi ed fi brinolytic protease from Urechis unicinctus. Thrombosis Research, 132(2), e135–e144. https://doi.org/10.1016/j.thromres.2013.07.001

Cahyaningrum, E., & Tri, A. (2021). Isolasi dan Pengaruh Monosodium Glutamat terhadap Pertumbuhan Bakteri Proteolitik Limbah Cair Tahu Isolation and Effect of Monosodium Glutamate on Growth Tofu Liquid Waste Proteolytic Bacteria. Berkala Ilmiah Biologi, 23(2), 84-90.

Chen, J., Li, H., Zhao, Z., Xia, X., Li, B., Zhang, J., & Yan, X. (2018). Diterpenes from the Marine Algae of the Genus Dictyota. Mar. Drugs. 2018, 16(5), 159; https://doi.org/10.3390/md16050159

Cristina, R., Pereira, C., Lourenço, L., Terra, L., Abreu, P. A., & Castro, H. C. (n.d.). Marine Diterpenes : Molecular Modeling of Thrombin Inhibitors with Potential Biotechnological Application as an Antithrombotic. Mar. Drugs, 15(3):79, 1–13. https://doi.org/10.3390/md15030079

Dayu, D., Turista, R., Puspitasari, E., & Kurnanda, F. (2021). The Potential Use of EDTA as an Alternative to Defibrination in Preparing Blood Agar Plates with Human AB Blood Type on Staphylococcus aureus Culture. Ina. J. Med. Lab. Sci. Tech. 2019; 1(1), 64–71. https://doi.org/10.33086/ijmlst.v3i1.1923

Devaraj, Y., Rajender, S. K., & Halami, P. M. (2018). Purification and characterization of fibrinolytic protease from Bacillus amyloliquefaciens MCC2606 and analysis of fibrin degradation product by MS/MS. Preparative Biochemistry and Biotechnology, 48(2), 172–180. https://doi.org/10.1080/10826068.2017.1421964

Ferdiani, D., Zilda, D. S., Afriansyah, M. A., & Ethica, S. N. (2023). Characteristics and Substrate Specificity of Semi-Purified Bacterial Protease of Bacillus thuringiensis HSFI-12 with Potential as Antithrombotic Agent. Science and Technology Indonesia, 8(1), 9–16. https://doi.org/10.26554/sti.2023.8.1.9-16

Fuad, H., Hidayati, N., Darmawati, S., Munandar, H., Rahmawati Sulistyaningtyas, A., Nurrahman, N., Rahman Ernanto, A., Seswita Zilda, D., Widjanarka, W., & Norma Ethica, S. (2020). Prospects of fibrinolytic proteases of bacteria from sea cucumber fermentation products as antithrombotic agent. BIO Web of Conferences, 28(December), 02006. https://doi.org/10.1051/bioconf/20202802006

Fuad, H., Hidayati, N., Darmawati, S., Munandar, H., Sulistyaningtyas, A. R., Ernanto, A. R., Muchlissin, S. I., Zilda, D. S., Nurrahman, N., & Ethica, S. N. (2021). Exploration of bacteria isolated from “rusip” fermented tissue of sand sea cucumber holothuria scabra with fibrinolytic, anticoagulant and antiplatelet activities. AACL Bioflux, 14(3), 1242–1258.

Hidayati, N., Fuad, H., Munandar, H., Zilda, D. S., Sulistyaningtyas, A. R., Nurrahman, N., Darmawati, S., & Ethica, S. N. (2021). Potential of fibrinolytic protease enzyme from tissue of sand sea cucumber (Holothuria scabra) as thrombolysis agent. IOP Conference Series: Earth and Environmental Science, 743(1). https://doi.org/10.1088/1755-1315/743/1/012007

Hu, Y., Yu, D., Wang, Z., Hou, J., Tyagi, R., Liang, Y., & Hu, Y. (2019). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Scientific Reports, 9(1), 3–12. https://doi.org/10.1038/s41598-019-45686-y

Islamiyah, N., Ethica, S. N., Afriansyah, M. A., Mukaromah, A. H., & Zilda, D. S. (2022). The Importance of Purification and Activity Analysis of the Purified Product of Thrombolytic Protease from Bacillus sp. HSFI-12– A Review . Proceedings of the 7th International Conference on Biological Science (ICBS 2021), 22(May). https://doi.org/10.2991/absr.k.220406.052

Jin, Q., & Kirk, M. F. (2018). pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Frontiers in Environmental Science, 6(May), 1–15. https://doi.org/10.3389/fenvs.2018.00021

Kartal, V. (2014). A trombosis story and PRES. Northern Clinics of Istanbul, 1(1), 49–52. https://doi.org/10.14744/nci.2014.25744

Knyphausen, P., Rangel Pereira, M., Brear, P., Hyvönen, M., Jermutus, L., & Hollfelder, F. (2023). Evolution of protease activation and specificity via alpha-2-macroglobulin-mediated covalent capture. Nature Communications, 14(1), 1-15. https://doi.org/10.1038/s41467-023-36099-7

Kumar Arun. (2014). Cardiovascular diseases: Are we overlooking some cardiovascular disease risk factors/ markers? Journal of Biomedical Sciences, 3(1), 1–4. https://doi.org/10.3823/1021

Lamouroux, J.V.F. (1809). Exposition des charactères du genre Dictyota, et tableu des espèces qu'il referme. Journal de Botanique (Desvaux) 2: 38-44.

Manu, K. R., Tangkonda, E., & Gelolodo, M. A. (n.d.). Isolasi dan identifikasi terhadap bakteri penyebab mastitis pada sapi perah di Desa Benlutu Kecamatan Batu Putih Kabupaten Timor Tengah Selatan. Jurnal Veteriner Nusantara, 2(2), 10-19.

Hidayati, N., Nurrahman, N., Fuad, H., Semarang, U. M., & Munandar, H. (2021). Bacillus tequilensis Isolated from Fermented Intestine of Holothuria scabra Produces Fibrinolytic Protease with Thrombolysis Activity Bacillus tequilensis Isolated from Fermented Intestine of Holothuria Scabra Produces Fibrinolytic Protease with Thrombolytuc Activity. March. IOP Conf. Ser.: Earth Environ. OP Conf. Series: Earth and Environmental Science 707 (2021) 012008, 1-9. https://doi.org/10.1088/1755-1315/707/1/012008

Pradhan, B., Patra, S., Nayak, R., Behera, C., Ranjan, S., Nayak, S., Bihari, B., Bhutia, S. K., & Jena, M. (2020). Macromolecules Multifunctional role of fucoidan , sulfated polysaccharides in human health and disease : A journey under the sea in pursuit of potent therapeutic agents. International Journal of Biological Macromolecules, 164, 4263–4278. https://doi.org/10.1016/j.ijbiomac.2020.09.019

Sabrina, A. N., & Ethica, S. N. (2018). Potensi Bakteri Indigen Penghasil Enzim Protease dan Lipase sebagai Agen Bioremediasi Limbah Biomedis Puskesmas Tlogosari Kulon Potential of Indigenous Bacteria Producing Protease and Lipase Enzymes as Bioremediation Agents of Biomedical Waste of Puskesmas. Prosiding Seminar Nasional Mahasiswa Unimus, 1, 276–282.

Safitri, R., Muchlissin, S. I., Mukaromah, A. H., Darmawati, S., & Ethica, S. N. (2018). Isolasi Bakteri Penghasil Enzim Protease Bacillus Thuringiensis Pada Oncom Merah Pasca Fermentasi 24 Jam dan Identifikasi Molekuler Bakteri Berbasis Gen 16S rRNA. Seminar Nasional Edusainstek, October, 31–39.

Silberfeld, T., Rousseau, F. & Reviers, B. de (2014). An updated classification of brown algae (Ochrophyta, Phaeophyceae). Cryptogamie Algologie 35(2): 117-156.

Sri Pananjung, A. M., Ulfa, E. U., Senjarini, K., & Arimurti, S. (2016). Karakterisasi Isolat Bakteri Fibrinolitik Wu 021055* Asal Perairan Pantai Papuma, Jember. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 2(1), 1. https://doi.org/10.29122/jbbi.v2i1.528

Umar, I., & Sujud, R. W. (2020). Hemostasis dan Disseminated Intravascular Coagulation ( DIC ). Journal of Anaesthesia and Pain, 1(2), 19–32.

Wolberg, A. S., Meng, Z. H., Iii, D. M. M., & Hoffman, M. (n.d.). A Systematic Evaluation of the Effect of Temperature on Coagulation Enzyme Activity and Platelet Function. The Journal of Trauma, 56(6), 1221-8. https://doi.org/10.1097/01.TA.0000064328.97941.FC

WorldHealthOrganization. (2018). NCDs Country Profiles 2018 WHO. 224. accessed on 22-06-2023. https://apps.who.int/iris/handle/10665/274512

Xin, X., Ambati, R. R., Cai, Z., & Lei, B. (2018). Purification and characterization of fibrinolytic enzyme from a bacterium isolated from soil. 3 Biotech, 8(2), 1–8. https://doi.org/10.1007/s13205-018-1115-4

Zhao, X., Guo, F., Hu, J., Zhang, L., Xue, C., Zhang, Z., & Li, B. (2016). Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria Japonica. Thrombosis Research, 144, 46-52. https://doi.org/10.1016/j.thromres.2016.03.008

Downloads

Published

2023-12-23

How to Cite

Afriansyah, M. A., & Ethica, S. N. (2023). Fibrinolytic Protease-Producing Bacteria with Varied Hemolysis Pattern Associated with Marine Algae Dictyota sp. Medical Laboratory Technology Journal, 9(2). https://doi.org/10.31964/mltj.v9i2.525

Issue

Section

Articles