HLA-DQB1*05:02 Allele Association with Anti-Tuberculosis Drug Induced Liver Injury: A Single-Hospital Based Study in Jakarta, Indonesia

Authors

  • Kinasih Prayuni Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, Indonesia http://orcid.org/0000-0001-5625-5721
  • Hilyatuz Zahroh Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, Indonesia
  • Syafrizal Syafrizal Pasar Rebo General Hospital, Jakarta, Indonesia
  • Rika Yuliwulandari Faculty of Medicine, University of Pembangunan Nasional Veteran Jawa Timur, Surabaya, Indonesia

DOI:

https://doi.org/10.31964/mltj.v9i2.547

Keywords:

Anti-tuberculosis-drug induced liver injury, human leucocyte antigen-DQB1*05:02, polymerase chain reaction, tuberculosis

Abstract

Past studies have delved into the genetic factors underlying anti-tuberculosis drug-induced liver injury (AT-DILI), primarily concentrating on polymorphisms in genes responsible for drug-metabolizing enzymes. However, the immune system's potential impact on drug adverse effects, specifically through genes such as HLA, has received limited attention. Previous research has notably revealed an association between HLA-DQB1*05 and AT-DILI, specifically the prevalence of the HLA-DQB*05:02 allele in AT-DILI patients. In light of this, our study aimed to investigate a potential link between HLA-DQB1*05:02 alleles and AT-DILI. In this study, we included 51 AT-DILI cases and 59 controls belonging to the Javanese ethnic group. The HLA-DQB1*05:02 genotypes were determined using a customized PCR-based typing method, and the results were further confirmed by analyzing five samples via the Luminex assay. Our findings revealed a significant association between HLA-DQA1*05: 02 and the risk of AT-DILI (P = 0.022; OR (95% CI) = 6.11 (1.25-29.74)). Moreover, the consistent results obtained from the Luminex assay validated the reliability of the custom PCR-based genotyping approach. This preliminary study sheds light on the relationship between the HLA-DQB1*05:02 allele and AT-DILI within the Indonesian population. Furthermore, our study demonstrates the dependability of custom PCR-based genotyping in detecting HLA-DQB1*05:02 alleles. Nevertheless, further research is imperative to corroborate and expand upon our findings.

References

American Thoracic Society/Centers for Disease Control/Infectious Diseases Society of America. (2003). Treatment of tuberculosis. https://doi.org/10.1164/ajrccm.161.supplement_3.ats600

Bao, Y., Ma, X., Rasmussen, T. P., & Zhong, X. B. (2018). Genetic Variations Associated with Anti-Tuberculosis Drug-Induced Liver Injury. Current Pharmacology Reports. 4(3):171–181. https://doi.org/10.1007/s40495-018-0131-8

Barbarino, J. M., Kroetz, D. L., Klein, T. E., & Altman, R. B. (2015). PharmGKB summary: Very important pharmacogene information for human leukocyte antigen B. Pharmacogenetics and Genomics. 24(4):205-221

Chen, R., Zhang, Y., Tang, S., Lv, X., Wu, S., Sun, F., Xia, Y., & Zhan, S. Y. (2015a). The association between HLA-DQB1 polymorphism and antituberculosis drug-induced liver injury: A Case-Control Study. Journal of Clinical Pharmacy and Therapeutics. 40(1):110–115. https://doi.org/10.1111/jcpt.12211

Chen, R., Zhang, Y., Tang, S., Lv, X., Wu, S., Sun, F., Xia, Y., & Zhan, S. Y. (2015b). The association between HLA-DQB1 polymorphism and antituberculosis drug-induced liver injury: a Case-Control Study. Journal of Clinical Pharmacy and Therapeutics. 40(1):110–115. https://doi.org/10.1111/jcpt.12211

Daly, A. K., Donaldson, P. T., Bhatnagar, P., Shen, Y., Pe’er, I., Floratos, A., Daly, M. J., Goldstein, D. B., John, S., Nelson, M. R., Graham, J., Park, B. K., Dillon, J. F., Bernal, W., Cordell, H. J., Pirmohamed, M., Aithal, G. P., & Day, C. P. (2009). HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nature Genetics. 41(7):816–819. https://doi.org/10.1038/ng.379

Dunn, P. P. J. (2011). Human leucocyte antigen typing: techniques and technology, a critical appraisal. International Journal of Immunogenetics. 38(6):463–473. https://doi.org/10.1111/j.1744-313X.2011.01040.x

Garibyan, L., & Avashia, N. (2013). Polymerase chain reaction. Journal of Investigative Dermatology. 133(3):1–4. https://doi.org/10.1038/jid.2013.1

Hirata, K., Takagi, H., Yamamoto, M., Matsumoto, T., Nishiya, T., Mori, K., Shimizu, S., Masumoto, H., & Okutani, Y. (2008). Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: A preliminary case-control study. Pharmacogenomics Journal. 8(1):29–33. https://doi.org/10.1038/sj.tpj.6500442

Hosomichi, K., Shiina, T., Tajima, A., & Inoue, I. (2015). The impact of next-generation sequencing technologies on HLA research. Journal of Human Genetics. 60(11):665–673. https://doi.org/10.1038/jhg.2015.102

Johdi, N. A., Othman Sri Noraima, Abd Razak, Z., Mazlan, L., Sagap, I., & Jamal, R. (2016). The HLA DPB1*02:01:02 and DQB1*05:02:01 alleles as possible risk factors for colorectal carcinoma in the Malaysian population. Asia-Pacific Journal of Mol. Medicine. 6(2): 1-8

Khalil, M. I. (2021). Different Types of PCR. Global Scientific Journals. 9(2):758–768. https://doi.org/10.11216/gsj.2021.02.48315

Kibbe, W. A. (2007). OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Research, 35(SUPPL.2). https://doi.org/10.1093/nar/gkm234

Kuranov, A. B., Kozhamkulov, U. A., Vavilov, M. N., Belova, E. S., Bismilda, V. L., Alenova, A. H., Ismailov, S. S., & Momynaliev, K. T. (2014). HLA-class II alleles in patients with drug-resistant pulmonary tuberculosis in Kazakhstan. Tissue Antigens. 83(2): 106–112. https://doi.org/10.1111/tan.12279

Leiro-Fernández, V., Valverde, D., Vázquez-Gallardo, R., Constenla-Caramés, L., del Campo-Pérez, V., & Fernández-Villar, A. (2016). HLA-DQ B1*0201 and A1*0102 alleles are not responsible for antituberculosis drug-induced hepatotoxicity risk in Spanish population. Frontiers in Medicine. 3:34. https://doi.org/10.3389/fmed.2016.00034

LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547852/. Accesed on 14 March 2021.

Lucena, M. I., Molokhia, M., Shen, Y., Urban, T. J., Aithal, G. P., Andrade, R. J., Day, C. P., Ruizcabello, F., Donaldson, P. T., Stephens, C., Pirmohamed, M., Romerogomez, M., Navarro, J. M., Fontana, R. J., Miller, M., Groome, M., Bondonguitton, E., Conforti, A., Stricker, B. H. C., … Daly, A. K. (2011). Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class i and II alleles. Gastroenterology. 141(1):338–347. https://doi.org/10.1053/j.gastro.2011.04.001

Maróstica, A. S., Nunes, K., Castelli, E. C., Silva, N. S. B., Weir, B. S., Goudet, J., & Meyer, D. (2022). How HLA diversity is apportioned: Influence of selection and relevance to transplantation. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1852): 20200420. https://doi.org/10.1098/rstb.2020.0420

Naderi, M., Hosseini, S. M., Behnampour, N., Shahramian, I., & Moradi, A. (2023). Association of HLADQ-B1 polymorphisms in three generations of chronic hepatitis B patients. Virus Research, 325:199036. https://doi.org/10.1016/j.virusres.2022.199036

Nicoletti, P., Werk, A. N., Sawle, A., Shen, Y., Urban, T. J., Coulthard, S. A., Bjornsson, E. S., Cascorbi, I., Floratos, A., Stammschulte, T., Gundert-Remy, U., Nelson, M. R., Aithal, G. P., & Daly, A. K. (2016). HLA-DRB1∗16:01-DQB1∗05:02 is a novel genetic risk factor for flupirtine-induced liver injury. Pharmacogenetics and Genomics. 26(5):218–224. https://doi.org/10.1097/FPC.0000000000000209

Perwitasari, D. A., Darmawan, E., Mulyani, U. A., Vlies, P. Van Der, Alffenaar, J. C., Atthobar, J., & Wilffert, B. (2018). Polymorphism of NAT2, CYP2E1, GST, and HLA Related to Drug-Induced Liver Injury in Indonesia Tuberculosis Patients. International Journal of Mycobacteriology. 7(4):380–386. https://doi.org/10.4103/ijmy.ijmy

Phillips, E., Bartlett, J. A., Sanne, I., Lederman, M. M., Hinkle, J., Rousseau, F., Dunn, D., Pavlos, R., James, I., Mallal, S. A., & Haas, D. W. (2013). Associations between HLA-DRB1*0102, HLA-B*5801, and hepatotoxicity during initiation of nevirapine-containing regimens in South Africa. Journal of Acquired Immune Deficiency Syndromes. 62(2): e55-7. https://doi.org/10.1097/QAI.0b013e31827ca50f

Sahiratmadja, E., Penggoam, S., Maskoen, A. M., Pramono, A. P., Aryani, D., Rahayu, N. S., & Panigoro, R. (2018). Distribution of rs1801279 and rs1799930 Polymorphisms in NAT2 Gene among Population in Kupang, Nusa Tenggara Timur, Indonesia. The Indonesian Biomedical Journal. 10(1):56–61. https://doi.org/10.18585/inabj.v10i1.330

Salvado, M., ’Caro, J. L., ’Garcia, C., ’Rudilla, F., ’Zalba-Jadraque, L., ’Lopez, E., ’Sanjuan, E., ’Gamez, J., & ’Vidal-Taboada, J. M. (2022). HLA-DQB1*05:02, *05:03, and *03:01 alleles as risk factors for myasthenia gravis in a Spanish cohort. Neurological Sciences. 43(8):5057–5065.

Shang, P., Xia, Y., Liu, F., Wang, X., Yuan, Y., Hu, D., Tu, D., Chen, Y., Deng, P., Cheng, S., Zhou, L., Ma, Y., Zhu, L., Gao, W., Wang, H., Chen, D., Yang, L., He, P., Wu, S., … Zhan, S. (2011). Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI) in China. PLoS ONE. 6(7):e21836. https://doi.org/10.1371/journal.pone.0021836

Sharma, S. K., Balamurugan, A., Saha, P. K., Pandey, R. M., & Mehra, N. K. (2002). Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. American Journal of Respiratory and Critical Care Medicine. 166(7): 916–919. https://doi.org/10.1164/rccm.2108091

Singla, N., Gupta, D., Birbian, N., & Singh, J. (2014). Association of NAT2, GST and CYP2E1 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. Tuberculosis. 94(3):293–298. https://doi.org/10.1016/j.tube.2014.02.003

Soedarsono, S., & Riadi, A. R. W. (2020). Tuberculosis Drug-Induced Liver Injury. Jurnal Respirasi. 6(2):49. https://doi.org/10.20473/jr.v6-i.2.2020.49-54

Sun, F., Chen, Y., Xiang, Y., & Zhan, S. (2008). Drug-metabolising enzyme polymorphisms and predisposition to anti-tuberculosis drug-induced liver injury: a meta-analysis. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease. 12(9):994–1002. http://www.ncbi.nlm.nih.gov/pubmed/18713495

Suvichapanich, S., Fukunaga, K., Zahroh, H., Mushiroda, T., Mahasirimongkol, S., & Toyo-oka, L. (2018). NAT2 ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury : a genotype-based meta-analysis. Pharmacogenetics and Genomics. 28(7):167–176. https://doi.org/10.1097/FPC.0000000000000339

Tait, B. D. (2016). Detection of HLA antibodies in organ transplant recipients - triumphs and challenges of the solid phase bead assay. Frontiers in Immunology. 9(7):570. https://doi.org/10.3389/fimmu.2016.00570

Testi, M., Terracciano, C., Guagnano, A., Testa, G., Marfia, G. A., Pompeo, E., Andreani, M., & Massa, R. (2012). Association of HLA-DQB1*05:02 and DRB1*16 alleles with late-onset, nonthymomatous, AChR-Ab-positive myasthenia gravis. Autoimmune Diseases. ID541760. https://doi.org/10.1155/2012/541760

Tostmann, A., Boeree, M. J., Aarnoutse, R. E., De Lange, W. C. M., Van Der Ven, A. J. a M., & Dekhuijzen, R. (2008). Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. Journal of Gastroenterology and Hepatology. 23(2): 192–202. https://doi.org/10.1111/j.1440-1746.2007.05207.x

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Research, 40(15):e115. https://doi.org/10.1093/nar/gks596

Urban, T. J., Daly, A. K., & Aithal, G. P. (2014). Genetic Basis of Drug-Induced Liver Injury : Present and Future. 1Seminars in Liver Disease. 34(2): 123-133

Wang, P.-Y., Xie, S.-Y., Hao, Q., Zhang, C., & Jiang, B.-F. (2012). NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease. 16(5):589–595. https://doi.org/10.5588/ijtld.11.0377

Wattanapokayakit, S., Mushiroda, T., Yanai, H., Wichukchinda, N., & Chuchottawon, C. (2016). NAT2 slow acetylator associated with anti-tuberculosis drug- induced liver injury in Thai patients. International Journal of Tuberculosis and Lung Disease. 20(10):1364–1369.

World Health Organization & World Health Organization. (‎2010)‎. Treatment of tuberculosis: guidelines, 4th edition. World Health Organization. https://apps.who.int/iris/handle/10665/44165. Accessed on 6 June 2018.

World Health Organization (WHO). (2021). Global Tuberculosis Report 2021. https://www.who.int/publications/i/item/9789240037021. Accessed on 15 April 2021.

Yuliwulandari, R., Prayuni, K., Susilowati, R. W., Subagyo, S., Soedarsono, S., M Sofro, A. S., Tokunaga, K., & Shin, J.-G. (2019). NAT2 slow acetylator is associated with anti-tuberculosis drug-induced liver injury severity in Indonesian population. Pharmacogenomics, 20(18):1303-1311. https://doi.org/10.2217/pgs-2019-0131.

Downloads

Published

2023-12-23

How to Cite

Prayuni, K., Zahroh, H., Syafrizal, S., & Yuliwulandari, R. (2023). HLA-DQB1*05:02 Allele Association with Anti-Tuberculosis Drug Induced Liver Injury: A Single-Hospital Based Study in Jakarta, Indonesia. Medical Laboratory Technology Journal, 9(2). https://doi.org/10.31964/mltj.v9i2.547

Issue

Section

Articles