Increased levels of IL-4 in the Spleen of BALB/c Mice after 65.5 kDa Pili Protein Klebsiella pneumoniae Immunization


  • Diego Rafi Putra Uta Faculty of Medicine, Jember University, Indonesia
  • Diana Chusna Mufida Department of Microbiology, Faculty of Medicine, Jember University, Indonesia
  • Ika Rahmawati Sutejo Department of Biochemistry, Faculty of Medicine, Jember University, Indonesia
  • Dini Agustina Department of Microbiology, Faculty of Medicine, Jember University, Indonesia
  • Enny Suswati Department of Microbiology, Faculty of Medicine, Jember University, Indonesia
  • Muhammad Ali Shodikin Department of Microbiology, Faculty of Medicine, Jember University, Indonesia



Interleukin-4, Klebsiella pneumoniae, pili, vaccine


Pneumonia is an infection of the lung parenchyma caused by Klebsiella pneumoniae, resulting in a high mortality rate of millions each year. To reduce these deaths, one potential solution is to create a vaccine that utilizes virulence factors of this microorganism, such as pili. During the early phase of infection, these antigens have a crucial role and can stimulate the production of memory b cells. These cells are activated by IL-4 (interleukin-4) in lymphoid organs, such as the spleen. Pathogen exposure such as virulence factors can stimulate the secretion of IL-4 in the spleen organ. This study aims to investigate the role of Klebsiella pneumoniae pili in this process. The research conducted from May to December 2023 at the Microbiology Laboratory, Faculty of Medicine, University of Jember was purely experimental, using Balb/c mice with IL-4 levels in the spleen organ as variables. The study used 15 mice, divided into control (K1), adjuvant (K2), and antigen (K3) groups. The research data were analyzed using non-parametric tests, specifically the Kruskal-Wallis and Post Hoc tests. The Kruskal-Wallis test revealed significant differences (p=0.003). In the Post Hoc test, a significant difference was found between the control and antigen groups (p=0.002). The results conclusively demonstrate that induction of Klebsiella pneumoniae pili protein 65.5 kDa significantly increases IL-4 levels in the spleen. Future studies should consider adding serum specimens to provide additional information.


Agustina, D., & Mufida, D. C. (2021). Immunodetection of Adhesin Pili Protein 38.6 kDa K. pneumoniae Using Western Blot. Journal of Islamic Science and Technology Vol. 7, No. 2, 7(2), 317–327.

Agustina, D., Wati, M. L., Wisudanti, D. D., Shodikin, M. A., Mufida, D. C., & Suswati, E. (2022). Pili Protein 65.5 kDa of Klebsiella pneumoniae Induced a Decrease in IL-10 in Mice. Majalah Kedokteran Bandung, 54(3), 143–147.

Arato, V., Raso, M. M., Gasperini, G., Scorza, F. B., & Micoli, F. (2021). Prophylaxis and treatment against Klebsiella pneumoniae: Current insights on this emerging anti-microbial resistant global threat. International Journal of Molecular Sciences, 22(8).

Arifin, W. N., & Zahiruddin, W. M. (2017). Sample Size Calculation in Animal Studies Using Resource Equation Approach. 24(5), 101–105.

Chang, D., Sharma, L., Cruz, C. S. D., & Zhhang, D. (2021). Clinical epidemiology , risk factors , and control strategies of Klebsiella pneumoniae infection. Frontiers in Microbiology, 12, 1–9.

Choi, M., Tennant, S. M., Simon, R., & Cross, A. S. (2020). Progress towards the development of Klebsiella vaccines. HHS Public Access, 18(7), 681–691.

Darwin, E., Elvira, D., & Elfi, E. F. (2021). Imunologi dan Infeksi. Andalas University Press.

Ejikeme, C., Nwachukwu, O., Ayad, S., Rath, P., Ejikeme, I., & Salamera, J. (2021). Hepatosplenic Abscess From Klebsiella pneumoniae in Poorly Controlled Diabetic. Journal of Investigative Medicine High Impact Case Reports, 9, 4–7.

Fan, J., Jin, S., Gilmartin, L., Toth, I., Hussein, W. M., & Stephenson, R. J. (2022). Advances in Infectious Disease Vaccine Adjuvants. Vaccines, 10(7).

Greenfield, E. A. (2019). Preparing and Using Adjuvants. Cold Spring Harbor Laboratory Press, 73–79.

Greenfield, E. A. (2020). Standard Immunization of Mice , Rats , and Hamsters. Cold Spring Harbor Laboratory Press, 82–85.

Hu, G., Chen, X., Chu, W., Ma, Z., Miao, Y., Luo, X., & Fu, Y. (2022). Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Veterinary Research, 1–13.

IAUCC. (2023). Anesthesia (Guideline).

Lee, W., Choi, H., Hong, S., Kim, K., Gho, Y. S., & Jeon, S. G. (2015). Vaccination with Klebsiella pneumoniae -derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. 47.

Lewis, S. M., Williams, A., Eisenbarth, S. C., Haven, N., Haven, N., & Sciences, G. (2019). Structure-function of the immune system in the spleen Steven. HHS Public Access, 4(33), 1–25.

Manuaba, I. A. S. P., Iswari, I. S., & Pinatih, K. J. P. (2021). Prevalensi bakteri Escherichia coli dan Klebsiella pneumoniae penghasil extended spectrum beta lactamase (ESBL) yang diisolasi dari pasien pneumonia RSUP Sanglah periode tahun 2019-2020. Jurnal Medika Udayana, 10(12), 51–57.

Martin, R. M., & Bachman, M. A. (2018). Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. 8, 1–15.

Moser, E. K., Field, N. S., & Oliver, P. M. (2018). Aberrant Th2 inflammation drives dysfunction of alveolar macrophages and susceptibility to bacterial pneumonia. Cellular and Molecular Immunology, 15(5), 480–492.

Nahm, F. S. (2016). Nonparametric Statistical Test For The Continous Data. Korean Journal of Anesthesiology.

Noh, A. S. M., Chuan, T. D., Khir, N. A. M., Zin, A. A. M., Ghazali, A. K., Long, I., Ab Aziz, C. B., & Ismail, C. A. N. (2021). Effects of different doses of complete Freund’s adjuvant on nociceptive behaviour and inflammatory parameters in polyarthritic rat model mimicking rheumatoid arthritis. PLoS ONE, 16, 1–24.

Poerio, N., Olimpieri, T., Henrici De Angelis, L., De Santis, F., Thaller, M. C., D’Andrea, M. M., & Fraziano, M. (2022). Fighting MDR-Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach. Frontiers in Immunology, 13, 1–6.

Pollard, A. J., & Bijker, E. M. (2021). A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology, 21(2), 83–100.

Sirat, D. (2021). Pengaruh pemberian imunomodulator jintan hitam (Nigella sativa) terhadap titer antibodi avian influenza dan newcastle disease pada broiler jantan. Jurnal Riset Dan Inovasi Peternakan, 5(1), 37–42.

Suardana, I. B. K. (2017). Diktat imunologi dasar sistem imun. Universitas Udayana.

Suswati, E., Agustina, D., Shodikin, M. A., Mufida, D. C., Sutejo, I. R., Wisnu, T., Putra, P., Mikrobiologi, D., Kedokteran, F., & Jember, U. (2022). Kadar Sekresi IL-10 Hepar Mencit Galur BALB / c Setelah Pemberian Protein Pili 65,5 kDa Klebsiella pneumoniae. Jurnal Biotek Medisian Indonea, 161–171.

Widiatmaja, D. T., Mufida, D. C., & Febianti, Z. (2021). Pengaruh Pemberian Imunisasi Intranasal Epitope Protein RrgB 255-270 Streptococcus pneumoniae Terhadap Kadar IL-4. Sriwijaya Journal of Medicine, 4, 0–6.




How to Cite

Putra Uta, D. R., Mufida, D. C., Sutejo, I. R., Agustina, D., Suswati, E., & Shodikin, M. A. (2024). Increased levels of IL-4 in the Spleen of BALB/c Mice after 65.5 kDa Pili Protein Klebsiella pneumoniae Immunization. Medical Laboratory Technology Journal, 10(1), 55–62.