Catechin Isolates from Gambir (Uncaria gambir Roxb) Maintain Glucose Homeostasis in Diabetic Model Rat

Authors

  • Rauza Sukma Rita Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia
  • Husna Yetti Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Andalas, Indonesia
  • Putra Santoso Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
  • Nita Afriani Department of Histology, Faculty of Medicine, Universitas Andalas, Indonesia

DOI:

https://doi.org/10.31964/mltj.v10i2.621

Keywords:

Gambir catechins, glucagon, insulin, rat

Abstract

The prevalence of diabetes mellitus is rising globally. Oxidative stress, which can result from hyperglycemia in diabetes, might have negative consequences. An antioxidant is needed to prevent hyperglycemia. Cathechin isolates are derived from gambir, which has many antioxidants. This study examines catechin isolates from gambir (Uncaria gambir Roxb.) effect on glucose homeostasis in rats induced by alloxan. For this experiment, 35 male rats were employed. Male rats were given alloxan (150 mg/BW, IP), and after 72 hours, blood glucose levels were assessed. If blood glucose levels exceeded 200 mg/dl, three oral catechin isolates were administered (T1=10 mg/kg/day, T2=20 mg/kg/day, and T3=40 mg/kg/day). Following blood collection on the experiment's last day, fasting blood glucose, glucagon and insulin levels were measured. Catechin isolates decreased blood glucose levels in all treatment groups compared to the positive control group (T1 = 150.750 ± 14.359 mg/dl; T2 = 159.750 ± 15.434 mg/dl, and T3 = 153.375 ± 20.207 mg/dl vs 385 ± 60.989 mg/dl) significantly (p value-0.05). A decrease in glucagon serum level was also observed in the treatment group vs positive control (T1: 193.855 ± 36.009 pg/ml, T2 = 286.689 ± 20.313 pg/ml, and T3 = 319.462 ± 30.060 pg/ml vs  529.825 ± 74.279 pg/ml), significantly. Catechine isolates in the T3 group showed an increase in insulin serum level compared to the positive control group significantly (T3 = 216.640 ± 38.230 µIU/ml vs 69.833 ± 3.071 µIU/ml). In conclusion, catechin isolates from gambir decreased blood glucose levels by reducing glucagon and increasing insulin serum levels.

References

Ahmad, E., Sargeant, J. A., Zaccardi, F., Khunti, K., Webb, D. R., & Davies, M. J. (2020). Where does metformin stand in modern day management of type 2 diabetes? Pharmaceuticals, 13(12), 1–26. https://doi.org/10.3390/ph13120427

Alioes, Y., Sukma, R. R., & Sekar, S. L. (2019). Effect of Gambir Catechin Isolate (Uncaria gambir Roxb.) Against Rat Triacylglycerol Level (Rattus novergicus). IOP Conference Series: Earth and Environmental Science, 217(1), 1-6. https://doi.org/10.1088/1755-1315/217/1/012020

American Diabetes Association. (2018). Older adults: Standards of medical care in Diabetes 2018. Diabetes Care, 41(1), S119–S125. https://doi.org/10.2337/dc18-S011

Anggraini, T., Tai, A., Yoshino, T., & Itani, T. (2011). Antioxidative activity and catechin content of four kinds of Uncaria gambir extracts from West Sumatra, Indonesia. African Journal of Biochemistry Research, 5(1), 33–38. http://www.academicjournals.org/AJBR

Aprely, K. J., Misfadhila, S., & Asra, R. (2021). A Review: The Phytochemistry, Pharmacology and Traditional Use of Gambir (Uncaria gambir (Hunter) Roxb). EAS Journal of Pharmacy and Pharmacology, 3(1), 21–25. https://doi.org/10.36349/easjpp.2021.v03i01.004

Arundita, S., Ismed, F., Rita, R. S., & Putra, D. P. (2020). (+)-Catechin & proanthocyanidin fraction of Uncaria gambir roxb. Improve adipocytes differentiation & glucose uptake of 3t3-l1 cells via sirtuin-1, peroxisome proliferator-activated receptor γ (PPAR γ), glucose transporter type 4 (GLUT-4) expressions. Advanced Pharmaceutical Bulletin, 10(4), 602–609. https://doi.org/10.34172/apb.2020.072

Balbi, M. E., Tonin, F. S., Mendes, A. M., Borba, H. H., Wiens, A., Fernandez-Llimos, F., & Pontarolo, R. (2018). Antioxidant effects of vitamins in type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetology and Metabolic Syndrome, 10(18), 1-12. https://doi.org/10.1186/s13098-018-0318-5

Banda, M., Nyirenda, J., Muzandu, K., Sijumbila, G., & Mudenda, S. (2018). Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Frontiers in Pharmacology, 9(1099), 1-8. https://doi.org/10.3389/fphar.2018.01099

Bisgaard Bengtsen, M., & Moller, N. (2021). Mini-review: Glucagon responses in type 1 diabetes – a matter of complexity. Physiological Reports, 9(16), 1-9. https://doi.org/10.14814/phy2.15009

Cryer, P. E. (2012). Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology, 153(3), 1039–1048. https://doi.org/10.1210/en.2011-1499

Davies, M. J., Aroda, V. R., Collins, B. S., Gabbay, R. A., Green, J., Maruthur, N. M., Rosas, S. E., Del Prato, S., Mathieu, C., Mingrone, G., Rossing, P., Tankova, T., Tsapas, A., & Buse, J. B. (2022). Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 45(11), 2753–2786. https://doi.org/10.2337/dci22-0034

Desai, B. N., & Harris, R. B. S. (2014). An acute method to test leptin responsiveness in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 306(11), 1-10. https://doi.org/10.1152/ajpregu.00548.2013

Elsayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. Lou, Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., & Gabbay, R. A. (2023). 6. Glycemic Targets: Standards of Care in Diabetes—2023. Diabetes Care, 46(1), S97–S110. https://doi.org/10.2337/dc23-S006

Eriani, K., Hasanah, U., Fitriana, R., Sari, W., Yunita, Y., & Azhar, A. (2021). Antidiabetic Potential of Methanol Extract of Flamboyant (Delonix regia) Flowers. Biosaintifika: Journal of Biology & Biology Education, 13(2), 185–194. https://doi.org/10.15294/biosaintifika.v13i2.30080

Foretz, M., Guigas, B., & Viollet, B. (2023). Metformin: update on mechanisms of action and repurposing potential. Nature Reviews Endocrinology, 19, 460-476. https://doi.org/10.1038/s41574-023-00833-4

Ghasemi-Dehnoo, M., Amini-Khoei, H., Lorigooini, Z., & Rafieian-Kopaei, M. (2020). Oxidative stress and antioxidants in diabetes mellitus. Asian Pacific Journal of Tropical Medicine, 13(10), 431–438. https://doi.org/10.4103/1995-7645.291036

Huang, D., Refaat, M., Mohammedi, K., Jayyousi, A., Al Suwaidi, J., & Abi Khalil, C. (2017). Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Research International, 2017(7839101), 1-9. https://doi.org/10.1155/2017/7839101

Hughes, D. S., & Narendran, P. (2014). Alpha cell function in type 1 diabetes. British Journal of Diabetes and Vascular Disease, 14(2), 45–51. https://doi.org/10.15277/bjdvd.2014.014

Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Lithuania), 53(6),365–374. https://doi.org/10.1016/j.medici.2018.02.001

International Diabetes Federation. (2021). IDF Diabetes Atlas 10th edition. www.diabetesatlas.org

Jayaraman, S., Devarajan, N., Rajagopal, P., Babu, S., Ganesan, S. K., Veeraraghavan, V. P., Palanisamy, C. P., Cui, B., Periyasamy, V., & Chandrasekar, K. (2021). β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules, 26(7), 1-21. https://doi.org/10.3390/molecules26072101

Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical pratice. Cardiovascular Diabetology, 4(5), 1-11. https://doi.org/10.1186/1475-2840-4-5

Kumar Sharma, V., Kumar, S., Patel, H. J., & Hugar, S. (2010). Hypoglycemic Activity of Ficus glomerata in Alloxan Induced Diabetic Rats. International Journal of Pharmaceutical Sciences Review and Research, 1(2), 18–22. www.globalresearchonline.net

Lee, P. G., & Halter, J. B. (2017). The pathophysiology of hyperglycemia in older adults: Clinical considerations. Diabetes Care, 40(4), 444–452. https://doi.org/10.2337/dc16-1732

Mat Saad, M. F., Goh, H. H., Rajikan, R., Tuan Yusof, T. R., Baharum, S. N., & Bunawan, H. (2020). From phytochemical composition to pharmacological importance. Tropical Journal of Pharmaceutical Research, 19(8), 1767–1773. https://doi.org/10.4314/tjpr.v19i8.28

Meng, J. M., Cao, S. Y., Wei, X. L., Gan, R. Y., Wang, Y. F., Cai, S. X., Xu, X. Y., Zhang, P. Z., & Li, H. Bin. (2019). Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants, 8(6), 1-25. https://doi.org/10.3390/antiox8060170

Munggari, I. P., Kurnia, D., Deawati, Y., & Julaeha, E. (2022). Current Research of Phytochemical, Medicinal and Non-Medicinal Uses of Uncaria gambir Roxb.: A Review. Molecules, 27(19), 1-19. https://doi.org/10.3390/molecules27196551

Nauck, M. A., Quast, D. R., Wefers, J., & Meier, J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46, 1-26. https://doi.org/10.1016/j.molmet.2020.101102

Park, S., & Park, S.-Y. (2021). Can antioxidants be effective therapeutics for type 2 diabetes? Yeungnam University Journal of Medicine, 38(2), 83–94. https://doi.org/10.12701/yujm.2020.00563

Pinela, S., Tuell, D. S., Los, E. A., Ford, G. A., & Stone, W. L. (2023). The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidant, 12(6), 1-19. https://doi.org/10.3390/antiox12061139

Rahmi, M., Rita, R. S., & Yetti, H. (2021). Gambir Catechins (Uncaria gambir Roxb) Prevent Oxidative Stress in Wistar Male Rats Fed a High-Fat Diet. Majalah Kedokteran Andalas, 44(7), 436–441. http://jurnalmka.fk.unand.ac.id

Rita, R. S., Oktomalioputri, B., & Kurniawan, E. (2023). Green tea decreased blood glucose and total cholesterol serum level in rat induced-diabetic model. AIP Conference Proceedings, 2730(1), 1-5. https://doi.org/10.1063/5.0128124

Rita, R. S., Yerizel, E., Asbiran, N., & Kadri, H. (2015). Pengaruh Ekstrak Mengkudu Terhadap Kadar Malondialdehid Darah dan Aktivitas Katalase Tikus DM yang Diinduksi Aloksan. Majalah Kedokteran Andalas, 33(1), 54–64

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157(107843), 1-10. https://doi.org/10.1016/j.diabres.2019.107843

Safithri, M., & Fahma, F. (2008). Potency of Piper crocatum Decoction as an Antihiperglycemia in Rat Strain Sprague dawley. HAYATI Journal of Biosciences, 15(1), 45–48.

Singh, H., Singh, R., kaur, S., Arora, R., Mannan, R., Buttar, H. S., Arora, S., & Singh, B. (2020). Protective role of Phyllanthus fraternus in alloxan-induced diabetes in rats. Journal of Ayurveda and Integrative Medicine, 11(4), 391–398. https://doi.org/10.1016/j.jaim.2019.09.008

Skyler, J. S., Bakris, G. L., Bonifacio, E., Darsow, T., Eckel, R. H., Groop, L., Groop, P. H., Handelsman, Y., Insel, R. A., Mathieu, C., McElvaine, A. T., Palmer, J. P., Pugliese, A., Schatz, D. A., Sosenko, J. M., Wilding, J. P. H., & Ratner, R. E. (2017). Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes, 66(2), 241–255. https://doi.org/10.2337/db16-0806

Umpierrez, G. E., & Pasquel, F. J. (2017). Management of inpatient hyperglycemia and diabetes in older adults. Diabetes Care, 40(4), 509–517. https://doi.org/10.2337/dc16-0989

Wang, Q., Liang, X., & Wang, S. (2013). Intra-islet glucagon secretion and action in the regulation of glucose homeostasis. Frontiers in Physiology, 3(485), 1- 8. https://doi.org/10.3389/fphys.2012.00485

Wen, L., Wu, D., Tan, X., Zhong, M., Xing, J., Li, W., Li, D., & Cao, F. (2022). The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients, 14(21), 1-19. https://doi.org/10.3390/nu14214681

Yanis Musdja, M., Rahman, H. A., & Hasan, D. (2018). Antioxidant Activity of Catechins Isolate of Uncaria Gambier Roxb in Male Rats. LIFE: International Journal of Health and Life-Sciences, 4(2), 34–46. https://doi.org/10.20319/lijhls.2018.42.3446

Yi, X., Dong, M., Guo, N., Tian, J., Lei, P., Wang, S., Yang, Y., & Shi, Y. (2023). Flavonoids improve type 2 diabetes mellitus and its complications: a review. Frontiers in Nutrition, 10, 1-16. https://doi.org/10.3389/fnut.2023.1192131

Yimam, M., Zhao, J., Corneliusen, B., Pantier, M., Brownell, L., & Jia, Q. (2014). Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model. Diabetology and Metabolic Syndrome, 6(1), 1-8. https://doi.org/10.1186/1758-5996-6-61

Yin, P., Wang, Y., Yang, L., Sui, J., & Liu, Y. (2018). Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules, 23(5), 1-14. https://doi.org/10.3390/molecules23051046

Yuniarti, E., & Ramadhani, S. (2023). Effect of Catechins Uncaria gambir Roxb. on Blood Sugar Levels of Mus musculus L. Hyperglycemia. Jurnal Penelitian Pendidikan IPA, 9(7), 4917–4922. https://doi.org/10.29303/jppipa.v9i7.3476

Zebua, E. A., Silalahi, J., & Julianti, E. (2018). Hypoglicemic activity of gambier (Uncaria gambir robx.) drinks in alloxan-induced mice. IOP Conference Series: Earth and Environmental Science, 122(1), 1-8. https://doi.org/10.1088/1755-1315/122/1/012088

Zhu, T., Li, M., Zhu, M., Liu, X., Huang, K., Li, W., Wang, S. X., Yin, Y., & Li, P. (2022). Epigallocatechin-3-gallate alleviates type 2 diabetes mellitus via β-cell function improvement and insulin resistance reduction. Iranian Journal of Basic Medical Sciences, 25(4), 483–488. https://doi.org/10.22038/IJBMS.2022.58591.13016

Downloads

Published

2024-12-26

How to Cite

Rita, R. S., Yetti, H., Santoso, P., & Afriani, N. (2024). Catechin Isolates from Gambir (Uncaria gambir Roxb) Maintain Glucose Homeostasis in Diabetic Model Rat. Medical Laboratory Technology Journal, 10(2), 124–133. https://doi.org/10.31964/mltj.v10i2.621

Issue

Section

Articles