Catechin Isolates from Gambir (Uncaria gambir Roxb) Maintain Glucose Homeostasis in Diabetic Model Rat
DOI:
https://doi.org/10.31964/mltj.v10i2.621Keywords:
Gambir catechins, glucagon, insulin, ratAbstract
The prevalence of diabetes mellitus is rising globally. Oxidative stress, which can result from hyperglycemia in diabetes, might have negative consequences. An antioxidant is needed to prevent hyperglycemia. Cathechin isolates are derived from gambir, which has many antioxidants. This study examines catechin isolates from gambir (Uncaria gambir Roxb.) effect on glucose homeostasis in rats induced by alloxan. For this experiment, 35 male rats were employed. Male rats were given alloxan (150 mg/BW, IP), and after 72 hours, blood glucose levels were assessed. If blood glucose levels exceeded 200 mg/dl, three oral catechin isolates were administered (T1=10 mg/kg/day, T2=20 mg/kg/day, and T3=40 mg/kg/day). Following blood collection on the experiment's last day, fasting blood glucose, glucagon and insulin levels were measured. Catechin isolates decreased blood glucose levels in all treatment groups compared to the positive control group (T1 = 150.750 ± 14.359 mg/dl; T2 = 159.750 ± 15.434 mg/dl, and T3 = 153.375 ± 20.207 mg/dl vs 385 ± 60.989 mg/dl) significantly (p value-0.05). A decrease in glucagon serum level was also observed in the treatment group vs positive control (T1: 193.855 ± 36.009 pg/ml, T2 = 286.689 ± 20.313 pg/ml, and T3 = 319.462 ± 30.060 pg/ml vs 529.825 ± 74.279 pg/ml), significantly. Catechine isolates in the T3 group showed an increase in insulin serum level compared to the positive control group significantly (T3 = 216.640 ± 38.230 µIU/ml vs 69.833 ± 3.071 µIU/ml). In conclusion, catechin isolates from gambir decreased blood glucose levels by reducing glucagon and increasing insulin serum levels.References
Ahmad, E., Sargeant, J. A., Zaccardi, F., Khunti, K., Webb, D. R., & Davies, M. J. (2020). Where does metformin stand in modern day management of type 2 diabetes? Pharmaceuticals, 13(12), 1–26. https://doi.org/10.3390/ph13120427
Alioes, Y., Sukma, R. R., & Sekar, S. L. (2019). Effect of Gambir Catechin Isolate (Uncaria gambir Roxb.) Against Rat Triacylglycerol Level (Rattus novergicus). IOP Conference Series: Earth and Environmental Science, 217(1), 1-6. https://doi.org/10.1088/1755-1315/217/1/012020
American Diabetes Association. (2018). Older adults: Standards of medical care in Diabetes 2018. Diabetes Care, 41(1), S119–S125. https://doi.org/10.2337/dc18-S011
Anggraini, T., Tai, A., Yoshino, T., & Itani, T. (2011). Antioxidative activity and catechin content of four kinds of Uncaria gambir extracts from West Sumatra, Indonesia. African Journal of Biochemistry Research, 5(1), 33–38. http://www.academicjournals.org/AJBR
Aprely, K. J., Misfadhila, S., & Asra, R. (2021). A Review: The Phytochemistry, Pharmacology and Traditional Use of Gambir (Uncaria gambir (Hunter) Roxb). EAS Journal of Pharmacy and Pharmacology, 3(1), 21–25. https://doi.org/10.36349/easjpp.2021.v03i01.004
Arundita, S., Ismed, F., Rita, R. S., & Putra, D. P. (2020). (+)-Catechin & proanthocyanidin fraction of Uncaria gambir roxb. Improve adipocytes differentiation & glucose uptake of 3t3-l1 cells via sirtuin-1, peroxisome proliferator-activated receptor γ (PPAR γ), glucose transporter type 4 (GLUT-4) expressions. Advanced Pharmaceutical Bulletin, 10(4), 602–609. https://doi.org/10.34172/apb.2020.072
Balbi, M. E., Tonin, F. S., Mendes, A. M., Borba, H. H., Wiens, A., Fernandez-Llimos, F., & Pontarolo, R. (2018). Antioxidant effects of vitamins in type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetology and Metabolic Syndrome, 10(18), 1-12. https://doi.org/10.1186/s13098-018-0318-5
Banda, M., Nyirenda, J., Muzandu, K., Sijumbila, G., & Mudenda, S. (2018). Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Frontiers in Pharmacology, 9(1099), 1-8. https://doi.org/10.3389/fphar.2018.01099
Bisgaard Bengtsen, M., & Moller, N. (2021). Mini-review: Glucagon responses in type 1 diabetes – a matter of complexity. Physiological Reports, 9(16), 1-9. https://doi.org/10.14814/phy2.15009
Cryer, P. E. (2012). Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology, 153(3), 1039–1048. https://doi.org/10.1210/en.2011-1499
Davies, M. J., Aroda, V. R., Collins, B. S., Gabbay, R. A., Green, J., Maruthur, N. M., Rosas, S. E., Del Prato, S., Mathieu, C., Mingrone, G., Rossing, P., Tankova, T., Tsapas, A., & Buse, J. B. (2022). Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 45(11), 2753–2786. https://doi.org/10.2337/dci22-0034
Desai, B. N., & Harris, R. B. S. (2014). An acute method to test leptin responsiveness in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 306(11), 1-10. https://doi.org/10.1152/ajpregu.00548.2013
Elsayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. Lou, Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., & Gabbay, R. A. (2023). 6. Glycemic Targets: Standards of Care in Diabetes—2023. Diabetes Care, 46(1), S97–S110. https://doi.org/10.2337/dc23-S006
Eriani, K., Hasanah, U., Fitriana, R., Sari, W., Yunita, Y., & Azhar, A. (2021). Antidiabetic Potential of Methanol Extract of Flamboyant (Delonix regia) Flowers. Biosaintifika: Journal of Biology & Biology Education, 13(2), 185–194. https://doi.org/10.15294/biosaintifika.v13i2.30080
Foretz, M., Guigas, B., & Viollet, B. (2023). Metformin: update on mechanisms of action and repurposing potential. Nature Reviews Endocrinology, 19, 460-476. https://doi.org/10.1038/s41574-023-00833-4
Ghasemi-Dehnoo, M., Amini-Khoei, H., Lorigooini, Z., & Rafieian-Kopaei, M. (2020). Oxidative stress and antioxidants in diabetes mellitus. Asian Pacific Journal of Tropical Medicine, 13(10), 431–438. https://doi.org/10.4103/1995-7645.291036
Huang, D., Refaat, M., Mohammedi, K., Jayyousi, A., Al Suwaidi, J., & Abi Khalil, C. (2017). Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Research International, 2017(7839101), 1-9. https://doi.org/10.1155/2017/7839101
Hughes, D. S., & Narendran, P. (2014). Alpha cell function in type 1 diabetes. British Journal of Diabetes and Vascular Disease, 14(2), 45–51. https://doi.org/10.15277/bjdvd.2014.014
Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Lithuania), 53(6),365–374. https://doi.org/10.1016/j.medici.2018.02.001
International Diabetes Federation. (2021). IDF Diabetes Atlas 10th edition. www.diabetesatlas.org
Jayaraman, S., Devarajan, N., Rajagopal, P., Babu, S., Ganesan, S. K., Veeraraghavan, V. P., Palanisamy, C. P., Cui, B., Periyasamy, V., & Chandrasekar, K. (2021). β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules, 26(7), 1-21. https://doi.org/10.3390/molecules26072101
Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical pratice. Cardiovascular Diabetology, 4(5), 1-11. https://doi.org/10.1186/1475-2840-4-5
Kumar Sharma, V., Kumar, S., Patel, H. J., & Hugar, S. (2010). Hypoglycemic Activity of Ficus glomerata in Alloxan Induced Diabetic Rats. International Journal of Pharmaceutical Sciences Review and Research, 1(2), 18–22. www.globalresearchonline.net
Lee, P. G., & Halter, J. B. (2017). The pathophysiology of hyperglycemia in older adults: Clinical considerations. Diabetes Care, 40(4), 444–452. https://doi.org/10.2337/dc16-1732
Mat Saad, M. F., Goh, H. H., Rajikan, R., Tuan Yusof, T. R., Baharum, S. N., & Bunawan, H. (2020). From phytochemical composition to pharmacological importance. Tropical Journal of Pharmaceutical Research, 19(8), 1767–1773. https://doi.org/10.4314/tjpr.v19i8.28
Meng, J. M., Cao, S. Y., Wei, X. L., Gan, R. Y., Wang, Y. F., Cai, S. X., Xu, X. Y., Zhang, P. Z., & Li, H. Bin. (2019). Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants, 8(6), 1-25. https://doi.org/10.3390/antiox8060170
Munggari, I. P., Kurnia, D., Deawati, Y., & Julaeha, E. (2022). Current Research of Phytochemical, Medicinal and Non-Medicinal Uses of Uncaria gambir Roxb.: A Review. Molecules, 27(19), 1-19. https://doi.org/10.3390/molecules27196551
Nauck, M. A., Quast, D. R., Wefers, J., & Meier, J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46, 1-26. https://doi.org/10.1016/j.molmet.2020.101102
Park, S., & Park, S.-Y. (2021). Can antioxidants be effective therapeutics for type 2 diabetes? Yeungnam University Journal of Medicine, 38(2), 83–94. https://doi.org/10.12701/yujm.2020.00563
Pinela, S., Tuell, D. S., Los, E. A., Ford, G. A., & Stone, W. L. (2023). The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidant, 12(6), 1-19. https://doi.org/10.3390/antiox12061139
Rahmi, M., Rita, R. S., & Yetti, H. (2021). Gambir Catechins (Uncaria gambir Roxb) Prevent Oxidative Stress in Wistar Male Rats Fed a High-Fat Diet. Majalah Kedokteran Andalas, 44(7), 436–441. http://jurnalmka.fk.unand.ac.id
Rita, R. S., Oktomalioputri, B., & Kurniawan, E. (2023). Green tea decreased blood glucose and total cholesterol serum level in rat induced-diabetic model. AIP Conference Proceedings, 2730(1), 1-5. https://doi.org/10.1063/5.0128124
Rita, R. S., Yerizel, E., Asbiran, N., & Kadri, H. (2015). Pengaruh Ekstrak Mengkudu Terhadap Kadar Malondialdehid Darah dan Aktivitas Katalase Tikus DM yang Diinduksi Aloksan. Majalah Kedokteran Andalas, 33(1), 54–64
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157(107843), 1-10. https://doi.org/10.1016/j.diabres.2019.107843
Safithri, M., & Fahma, F. (2008). Potency of Piper crocatum Decoction as an Antihiperglycemia in Rat Strain Sprague dawley. HAYATI Journal of Biosciences, 15(1), 45–48.
Singh, H., Singh, R., kaur, S., Arora, R., Mannan, R., Buttar, H. S., Arora, S., & Singh, B. (2020). Protective role of Phyllanthus fraternus in alloxan-induced diabetes in rats. Journal of Ayurveda and Integrative Medicine, 11(4), 391–398. https://doi.org/10.1016/j.jaim.2019.09.008
Skyler, J. S., Bakris, G. L., Bonifacio, E., Darsow, T., Eckel, R. H., Groop, L., Groop, P. H., Handelsman, Y., Insel, R. A., Mathieu, C., McElvaine, A. T., Palmer, J. P., Pugliese, A., Schatz, D. A., Sosenko, J. M., Wilding, J. P. H., & Ratner, R. E. (2017). Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes, 66(2), 241–255. https://doi.org/10.2337/db16-0806
Umpierrez, G. E., & Pasquel, F. J. (2017). Management of inpatient hyperglycemia and diabetes in older adults. Diabetes Care, 40(4), 509–517. https://doi.org/10.2337/dc16-0989
Wang, Q., Liang, X., & Wang, S. (2013). Intra-islet glucagon secretion and action in the regulation of glucose homeostasis. Frontiers in Physiology, 3(485), 1- 8. https://doi.org/10.3389/fphys.2012.00485
Wen, L., Wu, D., Tan, X., Zhong, M., Xing, J., Li, W., Li, D., & Cao, F. (2022). The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients, 14(21), 1-19. https://doi.org/10.3390/nu14214681
Yanis Musdja, M., Rahman, H. A., & Hasan, D. (2018). Antioxidant Activity of Catechins Isolate of Uncaria Gambier Roxb in Male Rats. LIFE: International Journal of Health and Life-Sciences, 4(2), 34–46. https://doi.org/10.20319/lijhls.2018.42.3446
Yi, X., Dong, M., Guo, N., Tian, J., Lei, P., Wang, S., Yang, Y., & Shi, Y. (2023). Flavonoids improve type 2 diabetes mellitus and its complications: a review. Frontiers in Nutrition, 10, 1-16. https://doi.org/10.3389/fnut.2023.1192131
Yimam, M., Zhao, J., Corneliusen, B., Pantier, M., Brownell, L., & Jia, Q. (2014). Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model. Diabetology and Metabolic Syndrome, 6(1), 1-8. https://doi.org/10.1186/1758-5996-6-61
Yin, P., Wang, Y., Yang, L., Sui, J., & Liu, Y. (2018). Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules, 23(5), 1-14. https://doi.org/10.3390/molecules23051046
Yuniarti, E., & Ramadhani, S. (2023). Effect of Catechins Uncaria gambir Roxb. on Blood Sugar Levels of Mus musculus L. Hyperglycemia. Jurnal Penelitian Pendidikan IPA, 9(7), 4917–4922. https://doi.org/10.29303/jppipa.v9i7.3476
Zebua, E. A., Silalahi, J., & Julianti, E. (2018). Hypoglicemic activity of gambier (Uncaria gambir robx.) drinks in alloxan-induced mice. IOP Conference Series: Earth and Environmental Science, 122(1), 1-8. https://doi.org/10.1088/1755-1315/122/1/012088
Zhu, T., Li, M., Zhu, M., Liu, X., Huang, K., Li, W., Wang, S. X., Yin, Y., & Li, P. (2022). Epigallocatechin-3-gallate alleviates type 2 diabetes mellitus via β-cell function improvement and insulin resistance reduction. Iranian Journal of Basic Medical Sciences, 25(4), 483–488. https://doi.org/10.22038/IJBMS.2022.58591.13016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rauza Sukma Rita, Husna Yetti, Putra Santoso, Nita Afriani

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Publishing your paper with Medical Laboratory Technology Journal (MLTJ) means that the author or authors retain the copyright in the paper. MLTJ granted an author(s) rights to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by MLTJ in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.
MLTJ journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially. MLTJ journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:
BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.SA: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.