Differential Leukocyte Count Responses Post Injection of Duffy-binding-like Domain-2β of PfEMP1 Recombinant Protein in Wistar Rat

Authors

  • Zahniar Zahniar Department of Parasitology, Faculty of Medicine, University of Jember, Indonesia
  • Erma Sulistyaningsih Department of Parasitology, Faculty of Medicine, University of Jember, Indonesia
  • Sheilla Rachmania Department of Histology, Faculty of Medicine, University of Jember, Indonesia
  • Rosita Dewi Department of Histology, Faculty of Medicine, University of Jember, Indonesia
  • Irawan Fajar Kusuma Department of Public Health, Faculty of Medicine, University of Jember, Indonesia

DOI:

https://doi.org/10.31964/mltj.v11i1.628

Keywords:

Differential leukocyte, malaria vaccine, Plasmodium falciparum, recombinant protein

Abstract

Malaria due to Plasmodium falciparum causes a high mortality rate, and vaccination is a valuable approach to control it. One malaria vaccine candidate is Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1), specifically Duffy binding-like 2β (DBL2β) domain (DBL2β-PfEMP1), which has a vital role in severe malaria pathogenesis. The DBL2β-PfEMP1 recombinant protein is immunogenic. This study aimed to investigate the immune response of DBL2β-PfEMP1 protein by analyzing the differential leukocyte count. Twenty-three rats were randomly divided into control and five treatment groups. Rats were injected on days 0, 21, and 42 with a physiological solution of 0.9% NaCl, adjuvant, DBL2β-PfEMP1 protein, and each mixture of DBL2β-PfEMP1 protein with doses of 150, 300, and 450 µg/200gBW and adjuvant. Blood was collected on day 56 and prepared for differential leukocyte count examination with a visual microscopic examination by two expert observers. The results showed that DBL2β-PfEMP1 recombinant protein and adjuvant increased the eosinophils and neutrophils but decreased monocytes and lymphocytes and did not affect the basophils. Statistical analysis showed significant differences between groups for eosinophils (between control and DBL groups; Adj and DBL groups; DBL and other groups except DBL150+adj) and monocytes (between control and all doşe groups with adjuvant; DBL and all doşe groups with aduvant), but not for basophils, neutrophils, and lymphocytes. In conclusion, the serial injection of DBL2β-PfEMP1 recombinant protein showed different responses in each leukocyte cell type. Further analysis by time-series differential leukocyte count examination will be essential to determine the responses of each type of leukocyte to support the research on malaria vaccine development.

References

Actor, J. K. (2023). Vaccines and immunotherapy. In Elsevier eBooks (pp. 133–146). https://doi.org/10.1016/b978-0-443-15307-5.00012-3

Bumbea, V., Ardelean, L., Radulescu, L., Damian, L., Bumbea, H., Dumitru, I., Lambert, C., & Vladareanu, A. M. (2023). Proinflammatory role of monocytes in SARS-CoV-2 infection in chronic hemodialysis patients. Frontiers in Immunology, 14(August), 1–12. https://doi.org/10.3389/fimmu.2023.1210961

Cahyaningsih, U., Taher, D. M., Gusdinar, R., Protozoologi, L., Parasitologi, D., Kesehatan, E., Ilmu, D., Hewan, P., Kesehatan, D., Veteriner, M., Hewan, K., & Pertanian Bogor, I. (2019). Persentase Jenis Leukosit Pada Mencit Setelah Diinfeksi Plasmodium Berghei Dan Diberi Fraksi Etil Asetat Cengkeh Varietas Afo Percentage Of Leukocytes Type In Mice After Infected With Plasmodium Berghei And Given An Ethyl Acetate Fraction Of Afo Varieties. Prosiding POKJANAS TOI Ke-57, 57–61.

Chan, J. A., Boyle, M. J., Moore, K. A., Reiling, L., Lin, Z., Hasang, W., Avril, M., Manning, L., Mueller, I., Laman, M., Davis, T., Smith, J. D., Rogerson, S. J., Simpson, J. A., Fowkes, F. J. I., & Beeson, J. G. (2019). Antibody targets on the surface of plasmodium falciparum- infected erythrocytes that are associated with immunity to severe malaria in young children. Journal of Infectious Diseases, 219(5), 819–828. https://doi.org/10.1093/infdis/jiy580

Chusid, M. J. (2018). Eosinophils: Friends or Foes? Journal of Allergy and Clinical Immunology: In Practice, 6(5), 1439–1444. https://doi.org/10.1016/j.jaip. 2018.04.031

Draper, S. J., Sack, B. K., King, C. R., Nielsen, C. M., Rayner, J. C., Higgins, M. K., Long, C. A., & Seder, R. A. (2018). Malaria Vaccines: Recent Advances and New Horizons. Cell Host and Microbe, 24(1), 43–56. https://doi.org/10.1016/j.chom. 2018.06.008

Fontes, J. A., Barin, J. G., Talor, M. V., Stickel, N., Schaub, J., Rose, N. R., & Č Iháková, D. (2017). Complete Freund’s adjuvant induces experimental autoimmune myocarditis by enhancing IL-6 production during initiation of the immune response. Immunity, Inflammation and Disease, 5(2), 163–176. https://doi.org/10.1002/iid3.155

Huber, J. E., Ahlfeld, J., Scheck, M. K., Zaucha, M., Witter, K., Lehmann, L., Karimzadeh, H., Pritsch, M., Hoelscher, M., von Sonnenburg, F., Dick, A., Barba-Spaeth, G., Krug, A. B., Rothenfußer, S., & Baumjohann, D. (2020). Dynamic changes in circulating T follicular helper cell composition predict neutralising antibody responses after yellow fever vaccination. Clinical and Translational Immunology, 9(5), 1–16. https://doi.org/10.1002/cti2.1129

Indrayana, M. T., Afandi, D., Romus, I., & Lesmana, S. D. (2023). Autopsy Discoveries in Severe Malaria. EJournal Kedokteran Indonesia, 11(2), 175–180. https://doi.org/10.23886/ejki.11.174.175-80

Khasanah, N. A. H., Husen, F., & Yuniati, N. I. (2023). Pewarnaan Sediaan Apusan Darah Tepi (SADT) Menggunakan Infusa Bunga Telang (Clitorea ternatea). Jurnal Kesehatan Dan Science, 19(1), 67–78.

Klein, M. M., Gittis, A. G., Su, H. P., Makobongo, M. O., Moore, J. M., Singh, S., Miller, L. H., & Garboczi, D. N. (2008). The cysteine-rich interdomain region from the highly variable Plasmodium falciparum erythrocyte membrane protein-1 exhibits a conserved structure. PLoS Pathogens, 4(9). https://doi.org/10.1371/journal. ppat.1000147

Lau, C. M., & Sun, J. C. (2018). The widening spectrum of immunological memory. Current Opinion in Immunology, 54, 42–49. https://doi.org/10.1016/j.coi.2018. 05.013

Ledbetter, L., Cherla, R., Chambers, C., Zhang, Y., & Zhang, G. (2019). Eosinophils Affect Antibody Isotype Switching and May Partially Contribute to Early Vaccine-Induced Immunity against Coxiella burnetii. 87(11), 1–17.

Lennartz, F., Adams, Y., Bengtsson, A., Olsen, R. W., Turner, L., Ndam, N. T., Ecklu-Mensah, G., Moussiliou, A., Ofori, M. F., Gamain, B., Lusingu, J. P., Petersen, J. E. V., Wang, C. W., Nunes-Silva, S., Jespersen, J. S., Lau, C. K. Y., Theander, T. G., Lavstsen, T., Hviid, L., … Jensen, A. T. R. (2017). Structure-Guided Identification of a Family of Dual Receptor-Binding PfEMP1 that Is Associated with Cerebral Malaria. Cell Host and Microbe, 21(3), 403–414. https://doi.org/10.1016/j.chom.2017.02.009

Lennartz, F., Smith, C., Craig, A. G., & Higgins, M. K. (2019). Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes. Proceedings of the National Academy of Sciences of the United States of America, 116(40), 20124–20134. https://doi.org/10.1073/pnas. 1911900116

Lin, Y. J., Zimmermann, J., & Schülke, S. (2024). Novel adjuvants in allergen-specific immunotherapy: where do we stand? Frontiers in Immunology, 15(February), 1–21. https://doi.org/10.3389/fimmu.2024.1348305

Maslachah, L., & Sugihartuti, R. (2017). Increase in neutrophil count after repeated exposure of Plasmodium berghei-infected mice to artemisinin. Universa Medicina, 36(1), 49. https://doi.org/10.18051/univmed.2017.v36.49-58

Mueller, S. N., & Rouse, B. T. (2008). Immune responses to viruses: Major Antiviral Innate Defense Mechanisms. In Clinical Immunology: Principles and Practice Expert Consult: Online and Print (Third Edit). Elsevier. https://doi.org/10.1016/ B978-0-323-04404-2.10027-2

Netea, M. G., Domínguez-Andrés, J., Barreiro, L. B., Chavakis, T., Divangahi, M., Fuchs, E., Joosten, L. A. B., van der Meer, J. W. M., Mhlanga, M. M., Mulder, W. J. M., Riksen, N. P., Schlitzer, A., Schultze, J. L., Stabell Benn, C., Sun, J. C., Xavier, R. J., & Latz, E. (2020). Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 20(6), 375–388. https://doi.org/10.1038/s41577-020-0285-6

Pelleau, S., Diop, S., Dia Badiane, M., Vitte, J., Beguin, P., Nato, F., Diop, B. M., Bongrand, P., Parzy, D., & Jambou, R. (2012). Enhanced basophil reactivities during severe malaria and their relationship with the Plasmodium falciparum histamine-releasing factor translationally controlled tumor protein. Infection and Immunity, 80(8), 2963–2970. https://doi.org/10.1128/IAI.00072-12

Plewes, K., Leopold, S. J., Kingston, H. W. F., & Dondorp, A. M. (2019). Malaria: What’s New in the Management of Malaria? Infectious Disease Clinics of North America, 33(1), 39–60. https://doi.org/10.1016/j.idc.2018.10.002

Poto, R., Loffredo, S., Marone, G., Di Salvatore, A., de Paulis, A., Schroeder, J. T., & Varricchi, G. (2023). Basophils beyond allergic and parasitic diseases. Frontiers in Immunology, 14(May), 1–19. https://doi.org/10.3389/fimmu.2023.1190034

Prince, L., Martín-Faivre, L., Villeret, B., Sanchez-Guzman, D., Le Guen, P., Sallenave, J. M., & Garcia-Verdugo, I. (2023). Eosinophils Recruited during Pulmonary Vaccination Regulate Mucosal Antibody Production. American Journal of Respiratory Cell and Molecular Biology, 68(2), 186–200. https://doi.org/10.1165/rcmb.2022-0236OC

Putri, D.A.S., Sulistyaningsih, E., Kusuma, I.F., & Dewi, R., (2022). Total Leukocyte Count in Rattus norvegicus after Duffy Binding-Like 2b-Plasmodium falciparum Erythrocyte Membrane Protein 1 Recombinant Protein injection: The way to a Peptide-based Malaria Vaccine Development. Biomolecular and Health Science Journal, 5(2), 71-76. DOI: 10.4103/bhsj.bhsj_30_22

Rachmania, S., Sulistyaningsih, E., & Ratna Dewi, A. A. I. (2021). Recombinant DBL2β-PfEMP1 of the Indonesian Plasmodium falciparum induces immune responses in Wistar rats. Journal of Taibah University Medical Sciences, 16(3), 422–430. https://doi.org/10.1016/j.jtumed.2020.12.007

Savi, M. K. (2022). An Overview of Malaria Transmission Mechanisms, Control, and Modeling. Medical Sciences, 11(1), 3. https://doi.org/10.3390/medsci11010003

Smith, L. J., Walenga, J. M., & Keohane, E. M. (2016). Rodak’s Hematology Clinical Principles and Applications.

Sulistyaningsih, E., Wibisono, R., & Dewi, R. (2022). Leukocyte and IgM Responses to Immunization with the CIDR1α-PfEMP1 Recombinant Protein in the Wistar Rat. Tropical Medicine and Infectious Disease Article, 7(222).

Walker, I. S., & Rogerson, S. J. (2023). Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence, 14(1). https://doi.org/10.1080/ 21505594.2022.2150456

Widyastuti, D. A. (2014). Blood Profile of Wistar Rats due to Subcronic Condition Caused by Sodium Nitrite. Jurnal Sain Veteriner, 31(2), 201–215. https://doi.org/10.22146/jsv.3810

Williams, M. A., & Bevan, M. J. (2007). Effector and memory CTL differentiation. Annual Review of Immunology, 25, 171–192. https://doi.org/10.1146/annurev. immunol.25.022106.141548

Wiser, M. F. (2023). Knobs, Adhesion, and Severe Falciparum Malaria. Tropical Medicine and Infectious Disease, 8(7). https://doi.org/10.3390/tropicalmed 8070353

Yazdani, A. N., DeMarco, N., Patel, P., Abdi, A., Velpuri, P., Agrawal, D. K., & Rai, V. (2023). Adverse Hematological Effects of COVID-19 Vaccination and Pathomechanisms of Low Acquired Immunity in Patients with Hematological Malignancies. Vaccines, 11(3). https://doi.org/10.3390/vaccines11030662

Zhao, J., Yang, X., Auh, S. L., Kim, K. D., Tang, H., & Fu, Y. X. (2009). Do adaptive immune cells suppress or activate innate immunity? Trends in Immunology, 30(1), 8–12. https://doi.org/10.1016/j.it.2008.10.003

Zhao, T., Cai, Y., Jiang, Y., He, X., Wei, Y., Yu, Y., & Tian, X. (2023). Vaccine adjuvants: mechanisms and platforms. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01557-7.

Downloads

Published

2025-06-13

How to Cite

Zahniar, Z., Sulistyaningsih, E., Rachmania, S., Dewi, R., & Kusuma, I. F. (2025). Differential Leukocyte Count Responses Post Injection of Duffy-binding-like Domain-2β of PfEMP1 Recombinant Protein in Wistar Rat. Medical Laboratory Technology Journal, 11(1), 10–20. https://doi.org/10.31964/mltj.v11i1.628

Issue

Section

Articles