The Effects of Fermented Buffalo Milk (Dadih) Fortified with Red Dragon Fruit and Selenium on Adiponectin and Tumor Necrosis Factor-Alpha Levels in Obese Rats
DOI:
https://doi.org/10.31964/mltj.v11i1.639Keywords:
Fermented buffalo milk, inflammation in obesity, red dragon fruit, seleniumAbstract
The increasing prevalence of obesity and its associated complications necessitates the exploration of functional foods as therapeutic interventions. This study aimed to analyze the effects of fermented buffalo milk (dadih) fortified with red dragon fruit (Hylocereus polyrhizus) and selenium on adiponectin and Tumor Necrosis Factor-Alpha (TNF-α) levels in obese rats. This experimental study employed a pretest-posttest control group design involving 20 Wistar rats divided into four groups: K1 (healthy control), K2 (obese control), P1, and P2 (obese intervention). K2, P1, and P2 were in obesity conditions induced by a high-fat-fructose diet (HFFD) for 28 days, and K1 was a healthy control group. Furthermore, dadih only and dadih fortified with red dragon fruit and selenium at 1.8 g/200 g body weight/day were administered to P1 and P2 groups, respectively. Treatment using dadih fortified with red dragon fruit and selenium significantly reduced weight gain (p=0.000) compared to K2 and P1. In addition, the P2 group showed increased adiponectin levels and decreased TNF-α levels (p=0.000) compared to the K2 and P1 groups. A strong negative correlation was found between adiponectin levels and TNF-alpha and body weight, while TNF-alpha and body weight showed a strong positive correlation. To conclude, fortifying dadih with red dragon fruit and selenium is more effective in improving the metabolic condition of obese rats compared to non-fortified dadih. This fortification significantly enhances adiponectin levels and reduces TNF-alpha levels. These findings suggest that functional food fortification could be a promising approach for managing obesity-related inflammation and metabolic disorders in humans, highlighting the potential application of dadih in dietary interventions.References
Adi Bramasta, A., Deasy Aryeni Hadianto, S., Ceryle Eriady, T., Ruth Natalie, M., & Putri Purwanto, N. (2023). Orlistat for obesity management with high levels of TNFα in children. Science Midwifery, 11(1), 244–250. https://doi.org/10.35335/midwifery.v11i1.1192
Akash, M. S. H., Rehman, K., & Liaqat, A. (2018). Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. Journal of Cellular Biochemistry, 119(1), 105–110. https://doi.org/10.1002/jcb.26174
Alzamil, H. (2020). Elevated Serum TNF- α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. Journal of Obesity, 2020. https://doi.org/10.1155/2020/5076858
Amelia, R., Said, F. M., Yasmin, F., & Harun, H. (2023). The Potential of West Sumatran Dadiah as The Novel to Alleviate Hyperglycemia, Hypercholesterolemia, and Reducing NF-kB Expression in Nephropathy Diabetes Rat Model. Trends in Sciences, 20(11). https://doi.org/10.48048/tis.2023.6812
Arivalagan, M., Karunakaran, G., Roy, T. K., Dinsha, M., Sindhu, B. C., Shilpashree, V. M., Satisha, G. C., & Shivashankara, K. S. (2021). Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry, 353(October 2020), 129426. https://doi.org/10.1016/j.foodchem.2021.129426
Arnold, M., Rajagukguk, Y. V., & Gramza-Michałowska, A. (2021). Characterization of Dadih: Traditional Fermented Buffalo Milk of Minangkabau. In Beverages. https://doi.org/10.3390/beverages7030060
Aryanta, I. W. R. (2022). Manfaat Buah Naga Untuk Kesehatan. Widya Kesehatan, 4(2), 8–13. https://doi.org/10.32795/widyakesehatan.v4i2.3386
Bhadauria, S., Choudhary, T., & Chaurasia, S. (2024). Exploring the Therapeutic Potential of Dragon Fruit: an Insightful Review. International Journal of Pharmacognosy, 11(6), 222–234. https://doi.org/10.13040/IJPSR.0975-8232.IJP.11(6).222-34
BKPK. (2023). Survei Kesehatan Indonesia (SKI). In Kementerian Kesehatan Republik Indonesia (pp. 1–926).
Bu, L., Li, Y., Wang, C., Jiang, Y., & Suo, H. (2024). Preventive effect of Lacticaseibacillus rhamnosus 2016SWU.05.0601 and its postbiotic elements on dextran sodium sulfate-induced colitis in mice. Frontiers in Microbiology, 15(February), 1–10. https://doi.org/10.3389/fmicb.2024.1342705
Chandrasekaran, P., & Weiskirchen, R. (2024). The Role of Obesity in Type 2 Diabetes Mellitus—An Overview. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031882
Choi, S. I., You, S., Kim, S., Won, G., Kang, C. H., & Kim, G. H. (2021). Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice. Food and Nutrition Research, 65, 1–11. https://doi.org/10.29219/fnr.v65.8087
Choi, W. J., Dong, H. J., Jeong, H. U., Jung, H. H., Kim, Y.-H., & Kim, T. H. (2019). Antiobesity Effects of Lactobacillus plantarum LMT1-48 Accompanied by Inhibition of Enterobacter cloacae in the Intestine of Diet-Induced Obese Mice. Journal of Medicinal Food, 22(6), 560–566. https://doi.org/10.1089/jmf.2018.4329
Cuevas-Sierra, A., Ramos-Lopez, O., Riezu-Boj, J. I., Milagro, F. I., & Martinez, J. A. (2019). Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Advances in Nutrition, 10(9), S17–S30. https://doi.org/10.1093/advances/nmy078
Dutheil, F., Gordon, B. A., Naughton, G., Crendal, E., Courteix, D., Chaplais, E., Thivel, D., Lac, G., & Benson, A. C. (2018). Cardiovascular risk of adipokines: a review. The Journal of International Medical Research, 46(6), 2082–2095. https://doi.org/10.1177/0300060517706578
Endalifer, M. L., & Diress, G. (2020). Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. Journal of Obesity, 2020. https://doi.org/10.1155/2020/6134362
Herlina, V. T., & Setiarto, R. H. B. (2024). From tradition to innovation: dadih, the Minangkabau tribe’s traditional fermented buffalo milk from Indonesia. Journal of Ethnic Foods, 11(1). https://doi.org/10.1186/s42779-024-00234-6
Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11(4). https://doi.org/10.3390/ani11040979
Kawai, T., Autieri, M. V., & Scalia, R. (2021). Adipose tissue inflammation and metabolic dysfunction in obesity. American Journal of Physiology - Cell Physiology, 320(3), C375–C391. https://doi.org/10.1152/ajpcell.00379.2020
Kim, D. H., Jeong, D., Kang, I. B., Kim, H., Song, K. Y., & Seo, K. H. (2017). Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue. Molecular Nutrition and Food Research, 61(11), 1–12. https://doi.org/10.1002/mnfr.201700252
Kinariwala, D., Panchal, G., Sakure, A., & Hati, S. (2020). Exploring the Potentiality of Lactobacillus Cultures on the Production of Milk-Derived Bioactive Peptides with Antidiabetic Activity. International Journal of Peptide Research and Therapeutics, 26. https://doi.org/10.1007/s10989-019-09958-5
Lim, S. M., & Kim, D. H. (2017). Bifidobacterium adolescentis IM38 ameliorates high-fat diet–induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota. Nutrition Research, 41, 86–96. https://doi.org/10.1016/j.nutres.2017.04.003
Liu, Q., Liu, Y., Li, F., Gu, Z., Liu, M., Shao, T., Zhang, L., Zhou, G., Pan, C., He, L., Cai, J., Zhang, X., Barve, S., McClain, C. J., Chen, Y., & Feng, W. (2020). Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. Journal of Nutritional Biochemistry, 75, 108256. https://doi.org/10.1016/j.jnutbio.2019.108256
López-Almada, G., Mejía-León, M. E., & Salazar-López, N. J. (2024). Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods, 13(22). https://doi.org/10.3390/foods13223529
Mihalopoulos, N. L., Yap, J. T., Beardmore, B., Holubkov, R., Nanjee, M. N., & Hoffman, J. M. (2020). Cold-Activated Brown Adipose Tissue is Associated with Less Cardiometabolic Dysfunction in Young Adults with Obesity. Obesity (Silver Spring, Md.), 28(5), 916–923. https://doi.org/10.1002/oby.22767
Milajerdi, A., Mousavi, S. M., Sadeghi, A., Salari-Moghaddam, A., Parohan, M., Larijani, B., & Esmaillzadeh, A. (2020). The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials. European Journal of Nutrition, 59(2), 633–649. https://doi.org/10.1007/s00394-019-01931-8
Mohkam, M., Afifi, N., Zamir, A. R., Heidari, R., Zamani, M. R., Nezafat, N., & Ghasemi, Y. (2023). Investigation of Lipase Inhibitory Activity of Novel Probiotics Isolated From Iranian Dairy Products. Journal of Microbiology, Biotechnology and Food Sciences, 12(6), 1–5. https://doi.org/10.55251/jmbfs.9357
Mu, J., Zhang, J., Zhou, X., Zalan, Z., Hegyi, F., Takács, K., Ibrahim, A., Awad, S., Wu, Y., Zhao, X., & Du, M. (2020). Effect of Lactobacillus plantarum KFY02 isolated from naturally fermented yogurt on the weight loss in mice with high-fat diet-induced obesity via PPAR-α/γ signaling pathway. Journal of Functional Foods, 75. https://doi.org/10.1016/j.jff.2020.104264
Munir, M., Rejeki, P. S., Pranoto, A., Sari, D. R., Izzatunnisa, N., Putra, R. A., & Halim, S. (2024). Response of Pro-Inflammatory Cytokines After A Single Bout of Moderate-Intensity Endurance Exercise in Obese. Sport Mont, 22(1), 123–127. https://doi.org/10.26773/smj.240217
Nabila, S. A., Rahmiwati, A., Novrikasari, N., & Sunarsih, E. (2024). Perilaku Pola Makan dan Aktivitas Fisik terhadap Masalah Obesitas : Systematic Review. Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 7(3), 498–505. https://doi.org/10.56338/mppki.v7i3.4533
Nido, S. A., Shituleni, S. A., Mengistu, B. M., Liu, Y., Khan, A. Z., Gan, F., Kumbhar, S., & Huang, K. (2016). Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet. Biological Trace Element Research, 171(2), 399–409. https://doi.org/10.1007/s12011-015-0552-8
Nishikito, D. F., Borges, A. C. A., Laurindo, L. F., Otoboni, A. M. M. B., Direito, R., Goulart, R. de A., Nicolau, C. C. T., Fiorini, A. M. R., Sinatora, R. V., & Barbalho, S. M. (2023). Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics, 15(1).
Osman, A. H., Mohran, M. A., & Tammam, A. A. (2020). Chemical, Microbiological, Rheological and Sensory Properties of Yoghurt Fortified with Selenium. Assiut Journal of Agricultural Sciences, 50(4), 51–63. https://doi.org/10.21608/ajas.2020.70972
Pei, R., Martin, D. A., DiMarco, D. M., & Bolling, B. W. (2017). Evidence for The Effects of Yogurt on Gut Health and Obesity. Critical Reviews in Food Science and Nutrition, 57(8), 1569–1583. https://doi.org/10.1080/10408398.2014.883356
Plaza-Díaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M., & Gil, A. (2017). Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients, 9(6). https://doi.org/10.3390/nu9060555
Quarta, S., Massaro, M., Carluccio, M. A., Calabriso, N., Bravo, L., Sarria, B., & García-Conesa, M. T. (2022). An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods, 11(16), 1–27. https://doi.org/10.3390/foods11162524
Rosas-Villegas, A., Sánchez-Tapia, M., Avila-Nava, A., Ramírez, V., Tovar, A. R., & Torres, N. (2017). Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients, 9(4). https://doi.org/10.3390/nu9040393
Saenjum, C., Pattananandecha, T., & Nakagawa, K. (2021). Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules, 26(12). https://doi.org/10.3390/molecules26123565
Setiarto, R. H. B., Anshory, L., & Wardana, A. A. (2023). Nutritional and microbiological characteristics of Dadih and their application to the food industry: A review. IOP Conference Series: Earth and Environmental Science, 1252(1). https://doi.org/10.1088/1755-1315/1252/1/012153
Setyaningrum, A. A., Ardya, D., Sutoyo, R., & Raditya Atmaka, D. (2021). Pengaruh Diet Tinggi Sukrosa dan Fruktosa Terhadap Obesitas Pada Hewan Coba: Kajian Pustaka The Effect of Sucrose and Fructose Diet on Obesity in Animal Trial: A Literature Review. Amerta Nutr, 173–179. https://doi.org/10.20473/amnt.v5i2.2021.
Shen, Y. L., Zhang, L. Q., Yang, Y., Yin, B. C., Ye, B. C., & Zhou, Y. (2022). Advances in the role and mechanism of lactic acid bacteria in treating obesity. Food Bioengineering, 1(1), 101–115. https://doi.org/10.1002/fbe2.12002
Świątkiewicz, I., Wróblewski, M., Nuszkiewicz, J., Sutkowy, P., Wróblewska, J., & Woźniak, A. (2023). The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076382
Takahashi, K., Suzuki, N., & Ogra, Y. (2020). Effect Of Gut Microflora on Nutritional Availability of Selenium. Food Chemistry, 319(November 2019), 1–8. https://doi.org/10.1016/j.foodchem.2020.126537
Taswin, M., & Oktarida, A. (2020). Pembuatan Yoghurt Buah Naga Merah (Hylocereus polyrhizus L.): Proporsi Sari Buah dan Susu UHT terhadap Viabilitas Bakteri dan Keasaman Yoghurt. JKPharm Jurnal Kesehatan Farmasi, 2(2), 14–20. https://doi.org/10.36086/jkpharm.v2i2.1690
Thiennimitr, P., Yasom, S., Tunapong, W., Chunchai, T., Wanchai, K., Pongchaidecha, A., Lungkaphin, A., Sirilun, S., Chaiyasut, C., Chattipakorn, N., & Chattipakorn, S. C. (2018). Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition, 54, 40–47. https://doi.org/10.1016/j.nut.2018.03.005
Tinkov, A. A., Ajsuvakova, O. P., Filippini, T., Zhou, J. C., Lei, X. G., Gatiatulina, E. R., Michalke, B., Skalnaya, M. G., Vinceti, M., Aschner, M., & Skalny, A. V. (2020). Selenium and selenoproteins in adipose tissue physiology and obesity. Biomolecules, 10(4), 1–31. https://doi.org/10.3390/biom10040658
Varra, F. N., Varras, M., Varra, V. K., & Theodosis-Nobelos, P. (2024). Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Molecular Medicine Reports, 29(6). https://doi.org/10.3892/mmr.2024.13219
Wang, M., Zhang, B., Hu, J., Nie, S., Xiong, T., & Xie, M. (2020). Intervention of five strains of Lactobacillus on obesity in mice induced by high-fat diet. Journal of Functional Foods, 72(May), 104078. https://doi.org/10.1016/j.jff.2020.104078
Wang, R. X., Zhou, M., Ma, H. L., Qiao, Y. B., & Li, Q. S. (2021). The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem, 16(10), 1576–1592. https://doi.org/10.1002/cmdc.202000996
Weiss, G. A., & Hennet, T. (2017). Mechanisms and Consequences of Intestinal Dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959–2977. https://doi.org/10.1007/s00018-017-2509-x
WHO. (2000). General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine World Health Organization. (pp. 1–73).
Xiao, J., Li, N., Xiao, S., Wu, Y., & Liu, H. (2021). Comparison of selenium nanoparticles and sodium selenite on the alleviation of early atherosclerosis by inhibiting endothelial dysfunction and inflammation in apolipoprotein e-deficient mice. International Journal of Molecular Sciences, 22(21). https://doi.org/10.3390/ijms222111612
Zhao, D., Gao, F., Zhu, H., Qian, Z., Mao, W., Yin, Y., & Chen, D. (2020). Selenium-Enriched Bifidobacterium longum DD98 Relieves Metabolic Alterations and Liver Injuries Associated with Obesity in High-Fat Diet-Fed Mice. Journal of Functional Foods, 72(June), 104051. https://doi.org/10.1016/j.jff.2020.104051
Zheng, Y., Zhang, Z., Tang, P., Wu, Y., Zhang, A., Li, D., Wang, C. Z., Wan, J. Y., Yao, H., & Yuan, C. S. (2023). Probiotics Fortify Intestinal Barrier Function: a systematic review and meta-analysis of randomized trials. Frontiers in Immunology, 14(April). https://doi.org/10.3389/fimmu.2023.1143548
Zorena, K., Jachimowicz-Duda, O., Ślęzak, D., Robakowska, M., & Mrugacz, M. (2020). Adipokines and obesity. Potential link to metabolic disorders and chronic complications. International Journal of Molecular Sciences, 21(10). https://doi.org/10.3390/ijms21103570.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fitri Wulandari, Ninik Rustanti, Adriyan Pramono

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Publishing your paper with Medical Laboratory Technology Journal (MLTJ) means that the author or authors retain the copyright in the paper. MLTJ granted an author(s) rights to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by MLTJ in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.
MLTJ journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially. MLTJ journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:
BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.SA: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.