The Impact of Phaleria macrocarpa Fruit Flavonoid Extract on Endometrial Thickness in Mice Menopausal Model

Authors

  • Dyah Ayu Septika Wijaya Master Program of Midwifery, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
  • Recavery Wulandari Division of Reproductive Endocrinology and Infertility, Departement of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
  • Sutrisno Sutrisno Departement of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
  • Yahya Irwanto Departement of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
  • Kenty Wantri Anita Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.

DOI:

https://doi.org/10.31964/mltj.v10i1.584

Keywords:

Endometrial thickness, flavonoid, Phaleria macrocarpa

Abstract

This study aims to determine how the effect of flavonoid phaleria macrocarpa fruit extract on the endometrial thickness of Mus musculus which is used as an experimental animal with a menopause model. This study employed a randomized post-test-only control group design on 32 female mice. Ovariectomy simulated menopause, followed by treatment with flavonoid from Phaleria macrocarpa fruit extract. Post-observariectomized, follicle-stimulating hormone levels indicated menopausal status. Hematoxylin-Eosin methods assessed endometrial thickness. The result indicated reduced endometrial thinning in the positive control group (K+). Conversely, the treatment group (P1-P4) exhibited increased endometrial thickness post-flavonoid extract administration. Ovariectomized-induced estrogen decline resulted in reduced endometrial thinning, mimicking menopausal conditions. Statistically, flavonoid extract administration increased endometrial thickness in ovariectomized-induced menopausal mice, with optimal effect observed at 7.5 mg/mice/day for 14 days. The preferred intervention dose for altering endometrial thickness in menopausal conditions was identified as P1 (3.75 mg/mice/day). In conclusion, a flavonoid from Phaleria macrocarpa fruit extract mitigates endometrial thinning in the menopausal mice model. For implication in menopausal women, clinical trials need to be conducted to evaluate the dosage of these flavonoids for their potential as a natural SERM (Selective Estrogen Receptor Modulator) before clinical application in managing endometrial health. Additionally, research on molecular effects particularly regarding ER (Estrogen Receptors) in the endometrial organ, is needed to confirm their phytoestrogenic effect.

References

Ahmad, R., Khairul Nizam Mazlan, M., Firdaus Abdul Aziz, A., Mohd Gazzali, A., Amir Rawa, M. S., & Wahab, H. A. (2023). Phaleria macrocarpa (Scheff.) Boerl.: An updated review of pharmacological effects, toxicity studies, and separation techniques. Saudi Pharmaceutical Journal, 31(6), 874–888. https://doi.org/10.1016/j.jsps.2023.04.006

Ali, R. B., Atangwho, I. J., Kaur, N., Abraika, O. S., Ahmad, M., Mahmud, R., & Asmawi, M. Z. (2012). Bioassay-Guided Antidiabetic Study of Phaleria macrocarpa Fruit Extract. Molecules, 17(5), 4986–5002. https://doi.org/10.3390/molecules17054986

Ariyanti, H., & Apriliana, E. (2016). Pengaruh Fitoestrogen terhadap Gejala Menopause. Jurnal Majority, 5(5), Article 5. https://doi.org/10.24843/metamorfosa.2020.v07.i02.p15

Badan Pusat Statistik. (2013). Proyeksi Penduduk Indonesia 2010-2035. Badan Pusat Statistik.

Bartiromo, L., Schimberni, M., Villanacci, R., Ottolina, J., Dolci, C., Salmeri, N., Viganò, P., & Candiani, M. (2021). Endometriosis and Phytoestrogens: Friends or Foes? A Systematic Review. Nutrients, 13(8), 2532. https://doi.org/10.3390/nu13082532

Brenda, J. B., & Janke, J. (2022). Core Curriculum for Maternal-Newborn Nursing E-book (6th ed.). Elsevier Health Sciences.

Calabrese, V., Cornelius, C., Trovato, A., Cavallaro, M., Mancuso, C., Di Rienzo, L., Condorelli, D., De Lorenzo, A., & Calabrese, E. J. (2010). The hormetic role of dietary antioxidants in free radical-related diseases. Current Pharmaceutical Design, 16(7), 877–883. https://doi.org/10.2174/138161210790883615

Deligdisch-Schor, L., & Mareş Miceli, A. (Eds.). (2020). Hormonal Pathology of the Uterus (Vol. 1242). Springer International Publishing. https://doi.org/10.1007/978-3-030-38474-6

Easmin, Mst. S., Sarker, Md. Z. I., Ferdosh, S., Shamsudin, S. H., Yunus, K. B., Uddin, Md. S., Sarker, Md. M. R., Akanda, Md. J. H., Hossain, Md. S., & Khalil, H. A. (2015). Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. Journal of Chemical Technology & Biotechnology, 90(6), 981–991. https://doi.org/10.1002/jctb.4603

Eyster, K. M. (Ed.). (2022). Estrogen Receptors: Methods and Protocols (2nd ed., Vol. 1366). Springer New York. https://link.springer.com/10.1007/978-1-4939-3127-9

Fait, T. (2019). Menopause hormone therapy: Latest developments and clinical practice. Drugs in Context, 8, 1–9. https://doi.org/10.7573/dic.212551

Han, C., Wei, Y., Geng, Y., Cui, Y., Li, S., Bao, Y., & Shi, W. (2020). Bisphenol A in utero exposure induces ovary dysfunction in mice offspring and the ameliorating effects of Cuscuta chinensis flavonoids. Environmental Science and Pollution Research, 27(25), 31357–31368. https://doi.org/10.1007/s11356-020-09202-4

Irawan, C., Sukiman, M., Putri, I. D., Utami, A., Dewanta, A., & Noviyanti, A. (2022). Optimization of the Ultrasound Assisted Extraction of Phaleria macrocarpa (Scheff.) Boerl. Fruit Peel and its Antioxidant and Anti-Gout Potential. Pharmacognosy Journal, 14(2), 397–405.

Jdidi, H., Kouba, F. G., Aoiadni, N., Abdennabi, R., Turki, M., Makni-Ayadi, F., & El Feki, A. (2021). Effects of estrogen deficiency on liver function and uterine development: Assessments of Medicago sativa’s activities as estrogenic, anti-lipidemic, and antioxidant agents using an ovariectomized mouse model. Archives of Physiology and Biochemistry, 127(2), 170–181. https://doi.org/10.1080/13813455.2019.1625927

Kiyama, R. (2023). Estrogenic flavonoids and their molecular mechanisms of action. The Journal of Nutritional Biochemistry, 114, 109250. https://doi.org/10.1016/j.jnutbio.2022.109250

Lecomte, S., Demay, F., Ferrière, F., & Pakdel, F. (2017). Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? International Journal of Molecular Sciences, 18(7), 1381. https://doi.org/10.3390/ijms18071381

Ma, S., Li, D., Feng, Y., Jiang, J., & Shen, B. (2017). Effects of Electroacupuncture on Uterine Morphology and Expression of Oestrogen Receptors in Ovariectomised Rats. Acupuncture in Medicine, 35(3), 208–214. https://doi.org/10.1136/acupmed-2016-011093

Maharani, M. (2023). Phaleria macrocarpa for Endometriosis Treatment: A Review. Journal of Medical Pharmaceutical and Allied Sciences, 12(1), 5582–5587. https://doi.org/10.55522/jmpas.V12I1.4232

Maharani, M., Lajuna, L., Yuniwati, C., Sabrida, O., & Sutrisno, S. (2021). Phytochemical characteristics from Phaleria macrocarpa and its inhibitory activity on the peritoneal damage of endometriosis. Journal of Ayurveda and Integrative Medicine, 12(2), 229–233. https://doi.org/10.1016/j.jaim.2020.06.002

Mahayuni, A. C., & Wirasuta, I. M. A. G. (2023). Aktivitas Antimikroba Ekstrak Buah Mahkota Dewa (Phaleria macrocarpa) sebagai Hand Sanitizer Alami. Prosiding Workshop Dan Seminar Nasional Farmasi, 1, 325–338. https://doi.org/10.24843/WSNF.2022.v01.i01.p26

Mamatha, S., Reddy, P. P., Voruganti, A., Reddy, V. A., & Boggula, N. (2020). Phaleria macrocarpa (scheff.) Boerl: A Phytochemical and Pharmacological Review.

Markovac, J., & Marcus, R. (2020). The pharmacology of selective estrogen receptor modulators: Past and present. In Principles of Bone Biology (pp. 863–893). Elsevier. https://doi.org/10.1016/B978-0-12-814841-9.00037-3

Mustaqim, W. A., Yus, R. R., & Tamam, M. B. (2021). Phaleria macrocarpa (Scheff.) Boerl. Thymelaeaceae. In F. M. Franco (Ed.), Ethnobotany of the Mountain Regions of Southeast Asia (pp. 843–855). Springer International Publishing. https://doi.org/10.1007/978-3-030-38389-3_168

Nori, M. (2021). Understanding the endometrium at menopause: Magnetic resonance imaging: A radiologist’s view. Journal of Mid-Life Health, 12(2), 168. https://doi.org/10.4103/jmh.jmh_94_21

Otify, M., Fuller, J., Ross, J., Shaikh, H., & Johns, J. (2015). Endometrial pathology in the postmenopausal woman – an evidence based approach to management. The Obstetrician & Gynaecologist, 17(1), 29–38. https://doi.org/10.1111/tog.12150

Rodríguez-Landa, J. F. (2022). Considerations of Timing Post-ovariectomy in Mice and Rats in Studying Anxiety- and Depression-Like Behaviors Associated With Surgical Menopause in Women. Frontiers in Behavioral Neuroscience, 16, 829274. https://doi.org/10.3389/fnbeh.2022.829274

Romadhona, N. F., Putri, F., Swandari, A., Siwi, K., & Gerhanawati, I. (2022). Buku Ajar Menopause: Permasalahan dan Manfaat Senam Untuk Menopause. UM Publishing.

Rumahorbo, C. G. P., Ilyas, S., Hutahaean, S., Fatimah Zuhra, C., & Situmorang, P. C. (2023). Oral chronic toxicity test of nano herbal Phaleria macrocarpa. Pharmacia, 70(2), 411–418. https://doi.org/10.3897/pharmacia.70.e106744

Stubbs, C., Mattingly, L., Crawford, S. A., Wickersham, E. A., Brockhaus, J. L., & McCarthy, L. H. (2017). Do SSRIs and SNRIs reduce the frequency and/or severity of hot flashes in menopausal women. The Journal of the Oklahoma State Medical Association, 110(5), 272–274.

Sutrisno, S., Noeraini, A. R., Khumairoh, R., Maharani, M., Nurseta, T., Handono, K., Wahyuni, E. S., & Khotimah, H. (2023). The effect of flavonoid isolates from extract of Phaleria macrocarpa (Scheff.) boerl on peritoneal fluid of endometriosis mice. AIP Conference Proceedings, 2634(1), 020072. https://doi.org/10.1063/5.0113532

Swain, M., & Kulkarni, A. D. (2021). Endometrium at Menopause: The Pathologist’s View. Journal of Mid-Life Health, 12(4), 310–315. https://doi.org/10.4103/jmh.jmh_218_21

The World Bank. (2022). World Bank Open Data. World Bank Open Data. https://data.worldbank.org. Accessed: 14/02/2024, 17:36:42.

Tyson, R. J., Park, C. C., Powell, J. R., Patterson, J. H., Weiner, D., Watkins, P. B., & Gonzalez, D. (2020). Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables. Frontiers in Pharmacology, 11, 420. https://doi.org/10.3389/fphar.2020.00420

Vachetta, V. S., Marder, M., Troncoso, M. F., & Elola, M. T. (2022). Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. European Journal of Medicinal Chemistry Reports, 6, 100077. https://doi.org/10.1016/j.ejmcr.2022.100077

WHO. (2022, October 17). Menopause. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/menopause. Accessed: 14/02/2024, 18:08:00.

Yousefzadeh, N., Kashfi, K., Jeddi, S., & Ghasemi, A. (2020). Ovariectomized rat model of osteoporosis: A practical guide. EXCLI Journal, 19, 89–107. https://doi.org/10.17179/excli2019-1990

Downloads

Published

2024-06-07

How to Cite

Wijaya, D. A. S., Wulandari, R., Sutrisno, S., Irwanto, Y., & Anita, K. W. (2024). The Impact of Phaleria macrocarpa Fruit Flavonoid Extract on Endometrial Thickness in Mice Menopausal Model. Medical Laboratory Technology Journal. https://doi.org/10.31964/mltj.v10i1.584

Issue

Section

Articles

Most read articles by the same author(s)